zephyr/drivers/ieee802154/ieee802154_cc2520.c

1089 lines
24 KiB
C
Raw Normal View History

/* ieee802154_cc2520_yaip.c - YAIP version of TI CC2520 driver */
/*
* Copyright (c) 2016 Intel Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define SYS_LOG_LEVEL CONFIG_SYS_LOG_TI_CC2520_LEVEL
#define SYS_LOG_NO_NEWLINE
#define SYS_LOG_DOMAIN "dev/cc2520"
#include <misc/sys_log.h>
#include <errno.h>
#include <kernel.h>
#include <arch/cpu.h>
#include <board.h>
#include <device.h>
#include <init.h>
#include <net/net_if.h>
#include <net/nbuf.h>
#include <misc/byteorder.h>
#include <string.h>
#include <rand32.h>
#include <gpio.h>
#include <net/ieee802154_radio.h>
#include "ieee802154_cc2520.h"
/**
* Content is split as follows:
* 1 - Debug related functions
* 2 - Generic helper functions (for any parts)
* 3 - GPIO related functions
* 4 - TX related helper functions
* 5 - RX related helper functions
* 6 - Radio device API functions
* 7 - Legacy radio device API functions
* 8 - Initialization
*/
#define CC2520_AUTOMATISM (FRMCTRL0_AUTOCRC | FRMCTRL0_AUTOACK)
#define CC2520_TX_THRESHOLD (0x7F)
#define CC2520_FCS_LENGTH (2)
/*********
* DEBUG *
********/
#ifndef CONFIG_TI_CC2520_DEBUG
#define _cc2520_print_gpio_config(...)
#define _cc2520_print_exceptions(...)
#define _cc2520_print_errors(...)
#else
static inline void _cc2520_print_gpio_config(struct device *dev)
{
struct cc2520_context *cc2520 = dev->driver_data;
SYS_LOG_DBG("GPIOCTRL0/1/2/3/4/5 = 0x%x/0x%x/0x%x/0x%x/0x%x/0x%x\n",
read_reg_gpioctrl0(&cc2520->spi),
read_reg_gpioctrl1(&cc2520->spi),
read_reg_gpioctrl2(&cc2520->spi),
read_reg_gpioctrl3(&cc2520->spi),
read_reg_gpioctrl4(&cc2520->spi),
read_reg_gpioctrl5(&cc2520->spi));
SYS_LOG_DBG("GPIOPOLARITY: 0x%x\n",
read_reg_gpiopolarity(&cc2520->spi));
SYS_LOG_DBG("GPIOCTRL: 0x%x\n",
read_reg_gpioctrl(&cc2520->spi));
}
static inline void _cc2520_print_exceptions(struct cc2520_context *cc2520)
{
uint8_t flag = read_reg_excflag0(&cc2520->spi);
SYS_LOG_DBG("EXCFLAG0: ");
if (flag & EXCFLAG0_RF_IDLE) {
SYS_LOG_DBG("RF_IDLE ");
}
if (flag & EXCFLAG0_TX_FRM_DONE) {
SYS_LOG_DBG("TX_FRM_DONE ");
}
if (flag & EXCFLAG0_TX_ACK_DONE) {
SYS_LOG_DBG("TX_ACK_DONE ");
}
if (flag & EXCFLAG0_TX_UNDERFLOW) {
SYS_LOG_DBG("TX_UNDERFLOW ");
}
if (flag & EXCFLAG0_TX_OVERFLOW) {
SYS_LOG_DBG("TX_OVERFLOW ");
}
if (flag & EXCFLAG0_RX_UNDERFLOW) {
SYS_LOG_DBG("RX_UNDERFLOW ");
}
if (flag & EXCFLAG0_RX_OVERFLOW) {
SYS_LOG_DBG("RX_OVERFLOW ");
}
if (flag & EXCFLAG0_RXENABLE_ZERO) {
SYS_LOG_DBG("RXENABLE_ZERO");
}
SYS_LOG_DBG("\n");
flag = read_reg_excflag1(&cc2520->spi);
SYS_LOG_DBG("EXCFLAG1: ");
if (flag & EXCFLAG1_RX_FRM_DONE) {
SYS_LOG_DBG("RX_FRM_DONE ");
}
if (flag & EXCFLAG1_RX_FRM_ACCEPTED) {
SYS_LOG_DBG("RX_FRM_ACCEPTED ");
}
if (flag & EXCFLAG1_SRC_MATCH_DONE) {
SYS_LOG_DBG("SRC_MATCH_DONE ");
}
if (flag & EXCFLAG1_SRC_MATCH_FOUND) {
SYS_LOG_DBG("SRC_MATCH_FOUND ");
}
if (flag & EXCFLAG1_FIFOP) {
SYS_LOG_DBG("FIFOP ");
}
if (flag & EXCFLAG1_SFD) {
SYS_LOG_DBG("SFD ");
}
if (flag & EXCFLAG1_DPU_DONE_L) {
SYS_LOG_DBG("DPU_DONE_L ");
}
if (flag & EXCFLAG1_DPU_DONE_H) {
SYS_LOG_DBG("DPU_DONE_H");
}
SYS_LOG_DBG("\n");
}
static inline void _cc2520_print_errors(struct cc2520_context *cc2520)
{
uint8_t flag = read_reg_excflag2(&cc2520->spi);
SYS_LOG_DBG("EXCFLAG2: ");
if (flag & EXCFLAG2_MEMADDR_ERROR) {
SYS_LOG_DBG("MEMADDR_ERROR ");
}
if (flag & EXCFLAG2_USAGE_ERROR) {
SYS_LOG_DBG("USAGE_ERROR ");
}
if (flag & EXCFLAG2_OPERAND_ERROR) {
SYS_LOG_DBG("OPERAND_ERROR ");
}
if (flag & EXCFLAG2_SPI_ERROR) {
SYS_LOG_DBG("SPI_ERROR ");
}
if (flag & EXCFLAG2_RF_NO_LOCK) {
SYS_LOG_DBG("RF_NO_LOCK ");
}
if (flag & EXCFLAG2_RX_FRM_ABORTED) {
SYS_LOG_DBG("RX_FRM_ABORTED ");
}
if (flag & EXCFLAG2_RFBUFMOV_TIMEOUT) {
SYS_LOG_DBG("RFBUFMOV_TIMEOUT");
}
SYS_LOG_DBG("\n");
}
#endif
/*********************
* Generic functions *
********************/
#define _usleep(usec) k_busy_wait(usec)
uint8_t _cc2520_read_reg(struct cc2520_spi *spi,
bool freg, uint8_t addr)
{
uint8_t len = freg ? 2 : 3;
spi->cmd_buf[0] = freg ? CC2520_INS_REGRD | addr : CC2520_INS_MEMRD;
spi->cmd_buf[1] = freg ? 0 : addr;
spi->cmd_buf[2] = 0;
spi_slave_select(spi->dev, spi->slave);
if (spi_transceive(spi->dev, spi->cmd_buf, len,
spi->cmd_buf, len) == 0) {
return spi->cmd_buf[len - 1];
}
return 0;
}
bool _cc2520_write_reg(struct cc2520_spi *spi, bool freg,
uint8_t addr, uint8_t value)
{
uint8_t len = freg ? 2 : 3;
spi->cmd_buf[0] = freg ? CC2520_INS_REGWR | addr : CC2520_INS_MEMWR;
spi->cmd_buf[1] = freg ? value : addr;
spi->cmd_buf[2] = freg ? 0 : value;
spi_slave_select(spi->dev, spi->slave);
return (spi_write(spi->dev, spi->cmd_buf, len) == 0);
}
bool _cc2520_write_ram(struct cc2520_spi *spi, uint16_t addr,
uint8_t *data_buf, uint8_t len)
{
spi->cmd_buf[0] = CC2520_INS_MEMWR | (addr >> 8);
spi->cmd_buf[1] = addr;
memcpy(&spi->cmd_buf[2], data_buf, len);
spi_slave_select(spi->dev, spi->slave);
return (spi_write(spi->dev, spi->cmd_buf, len + 2) == 0);
}
static uint8_t _cc2520_status(struct cc2520_spi *spi)
{
spi->cmd_buf[0] = CC2520_INS_SNOP;
spi_slave_select(spi->dev, spi->slave);
if (spi_transceive(spi->dev, spi->cmd_buf, 1,
spi->cmd_buf, 1) == 0) {
return spi->cmd_buf[0];
}
return 0;
}
static bool verify_osc_stabilization(struct cc2520_context *cc2520)
{
uint8_t timeout = 100;
uint8_t status;
do {
status = _cc2520_status(&cc2520->spi);
_usleep(1);
timeout--;
} while (!(status & CC2520_STATUS_XOSC_STABLE_N_RUNNING) && timeout);
return !!(status & CC2520_STATUS_XOSC_STABLE_N_RUNNING);
}
static inline uint8_t *get_mac(struct device *dev)
{
struct cc2520_context *cc2520 = dev->driver_data;
uint32_t *ptr = (uint32_t *)(cc2520->mac_addr + 4);
cc2520->mac_addr[0] = 0x00;
cc2520->mac_addr[1] = 0x12;
cc2520->mac_addr[2] = 0x4b;
cc2520->mac_addr[3] = 0x00;
UNALIGNED_PUT(sys_rand32_get(), ptr);
cc2520->mac_addr[7] = (cc2520->mac_addr[7] & ~0x01) | 0x02;
return cc2520->mac_addr;
}
/******************
* GPIO functions *
*****************/
static inline void set_reset(struct device *dev, uint32_t value)
{
struct cc2520_context *cc2520 = dev->driver_data;
gpio_pin_write(cc2520->gpios[CC2520_GPIO_IDX_RESET],
CONFIG_CC2520_GPIO_RESET, value);
}
static inline void set_vreg_en(struct device *dev, uint32_t value)
{
struct cc2520_context *cc2520 = dev->driver_data;
gpio_pin_write(cc2520->gpios[CC2520_GPIO_IDX_VREG_EN],
CONFIG_CC2520_GPIO_VREG_EN, value);
}
static inline uint32_t get_fifo(struct cc2520_context *cc2520)
{
uint32_t pin_value;
gpio_pin_read(cc2520->gpios[CC2520_GPIO_IDX_FIFO],
CONFIG_CC2520_GPIO_FIFO, &pin_value);
return pin_value;
}
static inline uint32_t get_fifop(struct cc2520_context *cc2520)
{
uint32_t pin_value;
gpio_pin_read(cc2520->gpios[CC2520_GPIO_IDX_FIFOP],
CONFIG_CC2520_GPIO_FIFOP, &pin_value);
return pin_value;
}
static inline uint32_t get_cca(struct cc2520_context *cc2520)
{
uint32_t pin_value;
gpio_pin_read(cc2520->gpios[CC2520_GPIO_IDX_CCA],
CONFIG_CC2520_GPIO_CCA, &pin_value);
return pin_value;
}
static inline void sfd_int_handler(struct device *port,
struct gpio_callback *cb, uint32_t pins)
{
struct cc2520_context *cc2520 =
CONTAINER_OF(cb, struct cc2520_context, sfd_cb);
if (atomic_get(&cc2520->tx) == 1) {
atomic_set(&cc2520->tx, 0);
k_sem_give(&cc2520->tx_sync);
}
}
static inline void fifop_int_handler(struct device *port,
struct gpio_callback *cb, uint32_t pins)
{
struct cc2520_context *cc2520 =
CONTAINER_OF(cb, struct cc2520_context, fifop_cb);
/* Note: Errata document - 1.2 */
if (!get_fifop(cc2520) && !get_fifop(cc2520)) {
return;
}
if (!get_fifo(cc2520)) {
cc2520->overflow = true;
}
k_sem_give(&cc2520->rx_lock);
}
static void enable_fifop_interrupt(struct cc2520_context *cc2520,
bool enable)
{
if (enable) {
gpio_pin_enable_callback(cc2520->gpios[CC2520_GPIO_IDX_FIFOP],
CONFIG_CC2520_GPIO_FIFOP);
} else {
gpio_pin_disable_callback(cc2520->gpios[CC2520_GPIO_IDX_FIFOP],
CONFIG_CC2520_GPIO_FIFOP);
}
}
static void enable_sfd_interrupt(struct cc2520_context *cc2520,
bool enable)
{
if (enable) {
gpio_pin_enable_callback(cc2520->gpios[CC2520_GPIO_IDX_SFD],
CONFIG_CC2520_GPIO_SFD);
} else {
gpio_pin_disable_callback(cc2520->gpios[CC2520_GPIO_IDX_SFD],
CONFIG_CC2520_GPIO_SFD);
}
}
static inline void setup_gpio_callbacks(struct device *dev)
{
struct cc2520_context *cc2520 = dev->driver_data;
gpio_init_callback(&cc2520->sfd_cb,
sfd_int_handler, BIT(CONFIG_CC2520_GPIO_SFD));
gpio_add_callback(cc2520->gpios[CC2520_GPIO_IDX_SFD],
&cc2520->sfd_cb);
gpio_init_callback(&cc2520->fifop_cb,
fifop_int_handler, BIT(CONFIG_CC2520_GPIO_FIFOP));
gpio_add_callback(cc2520->gpios[CC2520_GPIO_IDX_FIFOP],
&cc2520->fifop_cb);
}
/****************
* TX functions *
***************/
static inline bool write_txfifo_length(struct cc2520_spi *spi,
struct net_buf *buf)
{
spi->cmd_buf[0] = CC2520_INS_TXBUF;
spi->cmd_buf[1] = net_nbuf_ll_reserve(buf) +
buf->frags->len + CC2520_FCS_LENGTH;
spi_slave_select(spi->dev, spi->slave);
return (spi_write(spi->dev, spi->cmd_buf, 2) == 0);
}
static inline bool write_txfifo_content(struct cc2520_spi *spi,
struct net_buf *buf)
{
uint8_t cmd[128];
cmd[0] = CC2520_INS_TXBUF;
memcpy(&cmd[1], net_nbuf_ll(buf),
net_nbuf_ll_reserve(buf) + buf->frags->len);
spi_slave_select(spi->dev, spi->slave);
return (spi_write(spi->dev, cmd, net_nbuf_ll_reserve(buf) +
buf->frags->len + 1) == 0);
}
static inline bool verify_txfifo_status(struct cc2520_context *cc2520,
struct net_buf *buf)
{
if (read_reg_txfifocnt(&cc2520->spi) < (net_nbuf_ll_reserve(buf) +
buf->frags->len) ||
(read_reg_excflag0(&cc2520->spi) & EXCFLAG0_TX_UNDERFLOW)) {
return false;
}
return true;
}
static inline bool verify_tx_done(struct cc2520_context *cc2520)
{
uint8_t timeout = 10;
uint8_t status;
do {
_usleep(1);
timeout--;
status = read_reg_excflag0(&cc2520->spi);
} while (!(status & EXCFLAG0_TX_FRM_DONE) && timeout);
return !!(status & EXCFLAG0_TX_FRM_DONE);
}
/****************
* RX functions *
***************/
static inline void flush_rxfifo(struct cc2520_context *cc2520)
{
/* Note: Errata document - 1.1 */
enable_fifop_interrupt(cc2520, false);
instruct_sflushrx(&cc2520->spi);
instruct_sflushrx(&cc2520->spi);
enable_fifop_interrupt(cc2520, true);
write_reg_excflag0(&cc2520->spi, EXCFLAG0_RESET_RX_FLAGS);
}
#ifdef CONFIG_SPI_QMSI
/** This is a workaround, for SPI QMSI drivers as current QMSI API does not
* support asymmetric tx/rx buffer lengths.
* (i.e.: it's up to the user to handle tx dummy bytes in tx buffer)
*/
static inline uint8_t read_rxfifo_length(struct cc2520_spi *spi)
{
spi->cmd_buf[0] = CC2520_INS_RXBUF;
spi->cmd_buf[1] = 0;
spi_slave_select(spi->dev, spi->slave);
if (spi_transceive(spi->dev, spi->cmd_buf, 2,
spi->cmd_buf, 2) == 0) {
return spi->cmd_buf[1];
}
return 0;
}
static inline bool read_rxfifo_content(struct cc2520_spi *spi,
struct net_buf *buf, uint8_t len)
{
uint8_t data[128];
data[0] = CC2520_INS_RXBUF;
memset(&data[1], 0, len);
spi_slave_select(spi->dev, spi->slave);
if (spi_transceive(spi->dev, data, len+1, data, len+1) != 0) {
return false;
}
if (read_reg_excflag0(spi) & EXCFLAG0_RX_UNDERFLOW) {
SYS_LOG_ERR("RX underflow!\n");
return false;
}
memcpy(buf->data, &data[1], len);
net_buf_add(buf, len);
return true;
}
#else /* CONFIG_SPI_QMSI */
static inline uint8_t read_rxfifo_length(struct cc2520_spi *spi)
{
spi->cmd_buf[0] = CC2520_INS_RXBUF;
spi_slave_select(spi->dev, spi->slave);
if (spi_transceive(spi->dev, spi->cmd_buf, 1,
spi->cmd_buf, 2) == 0) {
return spi->cmd_buf[1];
}
return 0;
}
static inline bool read_rxfifo_content(struct cc2520_spi *spi,
struct net_buf *buf, uint8_t len)
{
uint8_t data[128];
spi->cmd_buf[0] = CC2520_INS_RXBUF;
spi_slave_select(spi->dev, spi->slave);
if (spi_transceive(spi->dev, spi->cmd_buf, 1, data, len+1) != 0) {
return false;
}
if (read_reg_excflag0(spi) & EXCFLAG0_RX_UNDERFLOW) {
SYS_LOG_ERR("RX underflow!\n");
return false;
}
memcpy(buf->data, &data[1], len);
net_buf_add(buf, len);
return true;
}
#endif /* CONFIG_SPI_QMSI */
static inline bool verify_crc(struct cc2520_context *cc2520)
{
cc2520->spi.cmd_buf[0] = CC2520_INS_RXBUF;
cc2520->spi.cmd_buf[1] = 0;
cc2520->spi.cmd_buf[2] = 0;
spi_slave_select(cc2520->spi.dev, cc2520->spi.slave);
if (spi_transceive(cc2520->spi.dev, cc2520->spi.cmd_buf, 3,
cc2520->spi.cmd_buf, 3) != 0) {
return false;
}
if (!(cc2520->spi.cmd_buf[2] & CC2520_FCS_CRC_OK)) {
return false;
}
/**
* CC2520 does not provide an LQI but a correlation factor.
* See Section 20.6
* Such calculation can be loosely used to transform it to lqi:
* corr <= 50 ? lqi = 0
* or:
* corr >= 110 ? lqi = 255
* else:
* lqi = (lqi - 50) * 4
*/
cc2520->lqi = cc2520->spi.cmd_buf[2] & CC2520_FCS_CORRELATION;
if (cc2520->lqi <= 50) {
cc2520->lqi = 0;
} else if (cc2520->lqi >= 110) {
cc2520->lqi = 255;
} else {
cc2520->lqi = (cc2520->lqi - 50) << 2;
}
return true;
}
static inline bool verify_rxfifo_validity(struct cc2520_spi *spi,
uint8_t pkt_len)
{
if (pkt_len < 2 || read_reg_rxfifocnt(spi) != pkt_len) {
return false;
}
return true;
}
static void cc2520_rx(int arg)
{
struct device *dev = INT_TO_POINTER(arg);
struct cc2520_context *cc2520 = dev->driver_data;
struct net_buf *pkt_buf = NULL;
struct net_buf *buf;
uint8_t pkt_len;
while (1) {
buf = NULL;
k_sem_take(&cc2520->rx_lock, K_FOREVER);
if (cc2520->overflow) {
SYS_LOG_ERR("RX overflow!\n");
cc2520->overflow = false;
goto flush;
}
pkt_len = read_rxfifo_length(&cc2520->spi) & 0x7f;
if (!verify_rxfifo_validity(&cc2520->spi, pkt_len)) {
SYS_LOG_ERR("Invalid content\n");
goto flush;
}
buf = net_nbuf_get_reserve_rx(0);
if (!buf) {
SYS_LOG_ERR("No buf available\n");
goto flush;
}
#if defined(CONFIG_TI_CC2520_RAW)
/**
* Reserve 1 byte for length
*/
pkt_buf = net_nbuf_get_reserve_data(1);
#else
pkt_buf = net_nbuf_get_reserve_data(0);
#endif
if (!pkt_buf) {
SYS_LOG_ERR("No pkt_buf available\n");
goto flush;
}
net_buf_frag_insert(buf, pkt_buf);
if (!read_rxfifo_content(&cc2520->spi, pkt_buf, pkt_len - 2)) {
SYS_LOG_ERR("No content read\n");
goto flush;
}
if (!verify_crc(cc2520)) {
SYS_LOG_ERR("Bad packet CRC\n");
goto out;
}
if (ieee802154_radio_handle_ack(cc2520->iface, buf) == NET_OK) {
SYS_LOG_DBG("ACK packet handled\n");
goto out;
}
#if defined(CONFIG_TI_CC2520_RAW)
net_buf_add_u8(pkt_buf, cc2520->lqi);
#endif
SYS_LOG_DBG("Caught a packet (%u) (LQI: %u)\n",
pkt_len, cc2520->lqi);
if (net_recv_data(cc2520->iface, buf) < 0) {
SYS_LOG_DBG("Packet dropped by NET stack\n");
goto out;
}
net_analyze_stack("CC2520 Rx Fiber stack",
(unsigned char *)cc2520->cc2520_rx_stack,
CONFIG_CC2520_RX_STACK_SIZE);
continue;
flush:
flush_rxfifo(cc2520);
out:
if (buf) {
net_buf_unref(buf);
}
}
}
/********************
* Radio device API *
*******************/
static int cc2520_cca(struct device *dev)
{
struct cc2520_context *cc2520 = dev->driver_data;
if (!get_cca(cc2520)) {
return -EBUSY;
}
return 0;
}
static int cc2520_set_channel(struct device *dev, uint16_t channel)
{
struct cc2520_context *cc2520 = dev->driver_data;
SYS_LOG_DBG("%u\n", channel);
if (channel < 11 || channel > 26) {
return -EINVAL;
}
/* See chapter 16 */
channel = 11 + 5 * (channel - 11);
if (!write_reg_freqctrl(&cc2520->spi, FREQCTRL_FREQ(channel))) {
SYS_LOG_ERR("FAILED\n");
return -EIO;
}
return 0;
}
static int cc2520_set_pan_id(struct device *dev, uint16_t pan_id)
{
struct cc2520_context *cc2520 = dev->driver_data;
SYS_LOG_DBG("0x%x\n", pan_id);
pan_id = sys_le16_to_cpu(pan_id);
if (!write_mem_pan_id(&cc2520->spi, (uint8_t *) &pan_id)) {
SYS_LOG_ERR("FAILED\n");
return -EIO;
}
return 0;
}
static int cc2520_set_short_addr(struct device *dev, uint16_t short_addr)
{
struct cc2520_context *cc2520 = dev->driver_data;
SYS_LOG_DBG("0x%x\n", short_addr);
short_addr = sys_le16_to_cpu(short_addr);
if (!write_mem_short_addr(&cc2520->spi, (uint8_t *) &short_addr)) {
SYS_LOG_ERR("FAILED\n");
return -EIO;
}
return 0;
}
static int cc2520_set_ieee_addr(struct device *dev, const uint8_t *ieee_addr)
{
struct cc2520_context *cc2520 = dev->driver_data;
if (!write_mem_ext_addr(&cc2520->spi, (void *)ieee_addr)) {
SYS_LOG_ERR("FAILED\n");
return -EIO;
}
SYS_LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4],
ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]);
return 0;
}
static int cc2520_set_txpower(struct device *dev, int16_t dbm)
{
struct cc2520_context *cc2520 = dev->driver_data;
uint8_t pwr;
SYS_LOG_DBG("%s: %d\n", dbm);
/* See chapter 19 part 8 */
switch (dbm) {
case 5:
pwr = 0xF7;
break;
case 3:
pwr = 0xF2;
break;
case 2:
pwr = 0xAB;
break;
case 1:
pwr = 0x13;
break;
case 0:
pwr = 0x32;
break;
case -2:
pwr = 0x81;
break;
case -4:
pwr = 0x88;
break;
case -7:
pwr = 0x2C;
break;
case -18:
pwr = 0x03;
break;
default:
goto error;
}
if (!write_reg_txpower(&cc2520->spi, pwr)) {
goto error;
}
return 0;
error:
SYS_LOG_DBG("%s: FAILED\n");
return -EIO;
}
static int cc2520_tx(struct device *dev, struct net_buf *buf)
{
struct cc2520_context *cc2520 = dev->driver_data;
uint8_t retry = 2;
bool status;
SYS_LOG_DBG("%s: %p (%u)\n", __func__,
buf, net_nbuf_ll_reserve(buf) + buf->frags->len);
if (!write_reg_excflag0(&cc2520->spi, EXCFLAG0_RESET_TX_FLAGS) ||
!write_txfifo_length(&cc2520->spi, buf) ||
!write_txfifo_content(&cc2520->spi, buf)) {
SYS_LOG_ERR("Cannot feed in TX fifo\n");
goto error;
}
if (!verify_txfifo_status(cc2520, buf)) {
SYS_LOG_ERR("Did not write properly into TX FIFO\n");
goto error;
}
/* 1 retry is allowed here */
do {
atomic_set(&cc2520->tx, 1);
k_sem_init(&cc2520->tx_sync, 0, UINT_MAX);
if (!instruct_stxoncca(&cc2520->spi)) {
SYS_LOG_ERR("Cannot start transmission\n");
goto error;
}
/* _cc2520_print_exceptions(cc2520); */
k_sem_take(&cc2520->tx_sync, 10);
retry--;
status = verify_tx_done(cc2520);
} while (!status && retry);
if (!status) {
SYS_LOG_ERR("No TX_FRM_DONE\n");
goto error;
}
return 0;
error:
atomic_set(&cc2520->tx, 0);
instruct_sflushtx(&cc2520->spi);
return -EIO;
}
static int cc2520_start(struct device *dev)
{
struct cc2520_context *cc2520 = dev->driver_data;
SYS_LOG_DBG("\n");
if (!instruct_sxoscon(&cc2520->spi) ||
!instruct_srxon(&cc2520->spi) ||
!verify_osc_stabilization(cc2520)) {
return -EIO;
}
flush_rxfifo(cc2520);
enable_fifop_interrupt(cc2520, true);
enable_sfd_interrupt(cc2520, true);
return 0;
}
static int cc2520_stop(struct device *dev)
{
struct cc2520_context *cc2520 = dev->driver_data;
SYS_LOG_DBG("\n");
enable_fifop_interrupt(cc2520, false);
enable_sfd_interrupt(cc2520, false);
if (!instruct_srfoff(&cc2520->spi) ||
!instruct_sxoscoff(&cc2520->spi)) {
return -EIO;
}
flush_rxfifo(cc2520);
return 0;
}
static uint8_t cc2520_get_lqi(struct device *dev)
{
struct cc2520_context *cc2520 = dev->driver_data;
return cc2520->lqi;
}
/******************
* Initialization *
*****************/
static int power_on_and_setup(struct device *dev)
{
struct cc2520_context *cc2520 = dev->driver_data;
/* Switching to LPM2 mode */
set_reset(dev, 0);
_usleep(150);
set_vreg_en(dev, 0);
_usleep(250);
/* Then to ACTIVE mode */
set_vreg_en(dev, 1);
_usleep(250);
set_reset(dev, 1);
_usleep(150);
if (!verify_osc_stabilization(cc2520)) {
return -EIO;
}
/* Default settings to always write (see chapter 28 part 1) */
if (!write_reg_txpower(&cc2520->spi, CC2520_TXPOWER_DEFAULT) ||
!write_reg_ccactrl0(&cc2520->spi, CC2520_CCACTRL0_DEFAULT) ||
!write_reg_mdmctrl0(&cc2520->spi, CC2520_MDMCTRL0_DEFAULT) ||
!write_reg_mdmctrl1(&cc2520->spi, CC2520_MDMCTRL1_DEFAULT) ||
!write_reg_rxctrl(&cc2520->spi, CC2520_RXCTRL_DEFAULT) ||
!write_reg_fsctrl(&cc2520->spi, CC2520_FSCTRL_DEFAULT) ||
!write_reg_fscal1(&cc2520->spi, CC2520_FSCAL1_DEFAULT) ||
!write_reg_agcctrl1(&cc2520->spi, CC2520_AGCCTRL1_DEFAULT) ||
!write_reg_adctest0(&cc2520->spi, CC2520_ADCTEST0_DEFAULT) ||
!write_reg_adctest1(&cc2520->spi, CC2520_ADCTEST1_DEFAULT) ||
!write_reg_adctest2(&cc2520->spi, CC2520_ADCTEST2_DEFAULT)) {
return -EIO;
}
/* EXTCLOCK0: Disabling external clock
* FRMCTRL0: AUTOACK and AUTOCRC enabled
* FRMCTRL1: SET_RXENMASK_ON_TX and IGNORE_TX_UNDERF
* FRMFILT0: Frame filtering (setting CC2520_FRAME_FILTERING)
* FIFOPCTRL: Set TX threshold (setting CC2520_TX_THRESHOLD)
*/
if (!write_reg_extclock(&cc2520->spi, 0) ||
!write_reg_frmctrl0(&cc2520->spi, CC2520_AUTOMATISM) ||
!write_reg_frmctrl1(&cc2520->spi, FRMCTRL1_IGNORE_TX_UNDERF |
FRMCTRL1_SET_RXENMASK_ON_TX) ||
!write_reg_frmfilt0(&cc2520->spi, FRMFILT0_FRAME_FILTER_EN |
FRMFILT0_MAX_FRAME_VERSION(3)) ||
!write_reg_frmfilt1(&cc2520->spi, FRMFILT1_ACCEPT_ALL) ||
!write_reg_srcmatch(&cc2520->spi, SRCMATCH_DEFAULTS) ||
!write_reg_fifopctrl(&cc2520->spi,
FIFOPCTRL_FIFOP_THR(CC2520_TX_THRESHOLD))) {
return -EIO;
}
/* Cleaning up TX fifo */
instruct_sflushtx(&cc2520->spi);
setup_gpio_callbacks(dev);
_cc2520_print_gpio_config(dev);
return 0;
}
static inline int configure_spi(struct device *dev)
{
struct cc2520_context *cc2520 = dev->driver_data;
struct spi_config spi_conf = {
.config = SPI_WORD(8),
.max_sys_freq = CONFIG_TI_CC2520_SPI_FREQ,
};
cc2520->spi.dev = device_get_binding(CONFIG_TI_CC2520_SPI_DRV_NAME);
if (cc2520->spi.dev) {
cc2520->spi.slave = CONFIG_TI_CC2520_SPI_SLAVE;
if (spi_configure(cc2520->spi.dev, &spi_conf) != 0 ||
spi_slave_select(cc2520->spi.dev,
cc2520->spi.slave) != 0) {
cc2520->spi.dev = NULL;
return -EIO;
}
}
return 0;
}
static int cc2520_init(struct device *dev)
{
struct cc2520_context *cc2520 = dev->driver_data;
atomic_set(&cc2520->tx, 0);
k_sem_init(&cc2520->rx_lock, 0, UINT_MAX);
cc2520->gpios = cc2520_configure_gpios();
if (!cc2520->gpios) {
SYS_LOG_ERR("Configuring GPIOS failed\n");
return -EIO;
}
if (configure_spi(dev) != 0) {
SYS_LOG_ERR("Configuring SPI failed\n");
return -EIO;
}
SYS_LOG_DBG("GPIO and SPI configured\n");
if (power_on_and_setup(dev) != 0) {
SYS_LOG_ERR("Configuring CC2520 failed\n");
return -EIO;
}
k_thread_spawn(cc2520->cc2520_rx_stack,
CONFIG_CC2520_RX_STACK_SIZE,
(k_thread_entry_t)cc2520_rx,
dev, NULL, NULL,
K_PRIO_COOP(2), 0, 0);
return 0;
}
static void cc2520_iface_init(struct net_if *iface)
{
struct device *dev = net_if_get_device(iface);
struct cc2520_context *cc2520 = dev->driver_data;
uint8_t *mac = get_mac(dev);
SYS_LOG_DBG("cc2520_iface_init\n");
net_if_set_link_addr(iface, mac, 8);
cc2520->iface = iface;
ieee802154_init(iface);
}
static struct cc2520_context cc2520_context_data;
static struct ieee802154_radio_api cc2520_radio_api = {
.iface_api.init = cc2520_iface_init,
.iface_api.send = ieee802154_radio_send,
.cca = cc2520_cca,
.set_channel = cc2520_set_channel,
.set_pan_id = cc2520_set_pan_id,
.set_short_addr = cc2520_set_short_addr,
.set_ieee_addr = cc2520_set_ieee_addr,
.set_txpower = cc2520_set_txpower,
.start = cc2520_start,
.stop = cc2520_stop,
.tx = cc2520_tx,
.get_lqi = cc2520_get_lqi,
};
#if defined(CONFIG_TI_CC2520_RAW)
DEVICE_AND_API_INIT(cc2520, CONFIG_TI_CC2520_DRV_NAME,
cc2520_init, &cc2520_context_data, NULL,
POST_KERNEL, CONFIG_TI_CC2520_INIT_PRIO,
&cc2520_radio_api);
#else
NET_DEVICE_INIT(cc2520, CONFIG_TI_CC2520_DRV_NAME,
cc2520_init, &cc2520_context_data, NULL,
CONFIG_TI_CC2520_INIT_PRIO,
&cc2520_radio_api, IEEE802154_L2,
NET_L2_GET_CTX_TYPE(IEEE802154_L2), 125);
#endif