zephyr/drivers/timer/nrf_rtc_timer.c

646 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (c) 2016-2021 Nordic Semiconductor ASA
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <device.h>
#include <soc.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/nrf_clock_control.h>
#include <drivers/timer/system_timer.h>
#include <drivers/timer/nrf_rtc_timer.h>
kernel: tickless: Add tickless kernel support Adds event based scheduling logic to the kernel. Updates management of timeouts, timers, idling etc. based on time tracked at events rather than periodic ticks. Provides interfaces for timers to announce and get next timer expiry based on kernel scheduling decisions involving time slicing of threads, timeouts and idling. Uses wall time units instead of ticks in all scheduling activities. The implementation involves changes in the following areas 1. Management of time in wall units like ms/us instead of ticks The existing implementation already had an option to configure number of ticks in a second. The new implementation builds on top of that feature and provides option to set the size of the scheduling granurality to mili seconds or micro seconds. This allows most of the current implementation to be reused. Due to this re-use and co-existence with tick based kernel, the names of variables may contain the word "tick". However, in the tickless kernel implementation, it represents the currently configured time unit, which would be be mili seconds or micro seconds. The APIs that take time as a parameter are not impacted and they continue to pass time in mili seconds. 2. Timers would not be programmed in periodic mode generating ticks. Instead they would be programmed in one shot mode to generate events at the time the kernel scheduler needs to gain control for its scheduling activities like timers, timeouts, time slicing, idling etc. 3. The scheduler provides interfaces that the timer drivers use to announce elapsed time and get the next time the scheduler needs a timer event. It is possible that the scheduler may not need another timer event, in which case the system would wait for a non-timer event to wake it up if it is idling. 4. New APIs are defined to be implemented by timer drivers. Also they need to handler timer events differently. These changes have been done in the HPET timer driver. In future other timers that support tickles kernel should implement these APIs as well. These APIs are to re-program the timer, update and announce elapsed time. 5. Philosopher and timer_api applications have been enabled to test tickless kernel. Separate configuration files are created which define the necessary CONFIG flags. Run these apps using following command make pristine && make BOARD=qemu_x86 CONF_FILE=prj_tickless.conf qemu Jira: ZEP-339 ZEP-1946 ZEP-948 Change-Id: I7d950c31bf1ff929a9066fad42c2f0559a2e5983 Signed-off-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-02-06 04:37:19 +01:00
#include <sys_clock.h>
#include <hal/nrf_rtc.h>
#define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
#define CHAN_COUNT (EXT_CHAN_COUNT + 1)
#define RTC NRF_RTC1
#define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
#define RTC_LABEL rtc1
#define RTC_CH_COUNT RTC1_CC_NUM
BUILD_ASSERT(CHAN_COUNT <= RTC_CH_COUNT, "Not enough compare channels");
#define COUNTER_BIT_WIDTH 24U
#define COUNTER_SPAN BIT(COUNTER_BIT_WIDTH)
#define COUNTER_MAX (COUNTER_SPAN - 1U)
#define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
#define OVERFLOW_RISK_RANGE_END (COUNTER_SPAN / 16)
#define ANCHOR_RANGE_START (COUNTER_SPAN / 8)
#define ANCHOR_RANGE_END (7 * COUNTER_SPAN / 8)
#define TARGET_TIME_INVALID (UINT64_MAX)
static volatile uint32_t overflow_cnt;
static volatile uint64_t anchor;
static uint64_t last_count;
struct z_nrf_rtc_timer_chan_data {
z_nrf_rtc_timer_compare_handler_t callback;
void *user_context;
volatile uint64_t target_time;
};
static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
static atomic_t int_mask;
static atomic_t alloc_mask;
static atomic_t force_isr_mask;
static uint32_t counter_sub(uint32_t a, uint32_t b)
{
return (a - b) & COUNTER_MAX;
}
static void set_comparator(int32_t chan, uint32_t cyc)
{
nrf_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
}
static uint32_t get_comparator(int32_t chan)
{
return nrf_rtc_cc_get(RTC, chan);
}
static void event_clear(int32_t chan)
{
nrf_rtc_event_clear(RTC, RTC_CHANNEL_EVENT_ADDR(chan));
}
static void event_enable(int32_t chan)
{
nrf_rtc_event_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
}
static void event_disable(int32_t chan)
{
nrf_rtc_event_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
}
static uint32_t counter(void)
{
return nrf_rtc_counter_get(RTC);
}
static uint32_t absolute_time_to_cc(uint64_t absolute_time)
{
/* 24 least significant bits represent target CC value */
return absolute_time & COUNTER_MAX;
}
static uint32_t full_int_lock(void)
{
uint32_t mcu_critical_state;
if (IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS)) {
mcu_critical_state = __get_PRIMASK();
__disable_irq();
} else {
mcu_critical_state = irq_lock();
}
return mcu_critical_state;
}
static void full_int_unlock(uint32_t mcu_critical_state)
{
if (IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS)) {
__set_PRIMASK(mcu_critical_state);
} else {
irq_unlock(mcu_critical_state);
}
}
uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)
{
__ASSERT_NO_MSG(chan < CHAN_COUNT);
return nrf_rtc_event_address_get(RTC, nrf_rtc_compare_event_get(chan));
}
uint32_t z_nrf_rtc_timer_capture_task_address_get(int32_t chan)
{
#if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk)
__ASSERT_NO_MSG(chan < CHAN_COUNT);
if (chan == 0) {
return 0;
}
nrf_rtc_task_t task = offsetof(NRF_RTC_Type, TASKS_CAPTURE[chan]);
return nrf_rtc_task_address_get(RTC, task);
#else
ARG_UNUSED(chan);
return 0;
#endif
}
static bool compare_int_lock(int32_t chan)
{
atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));
nrf_rtc_int_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
__DMB();
__ISB();
return prev & BIT(chan);
}
bool z_nrf_rtc_timer_compare_int_lock(int32_t chan)
{
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
return compare_int_lock(chan);
}
static void compare_int_unlock(int32_t chan, bool key)
{
if (key) {
atomic_or(&int_mask, BIT(chan));
nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
if (atomic_get(&force_isr_mask) & BIT(chan)) {
NVIC_SetPendingIRQ(RTC_IRQn);
}
}
}
void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key)
{
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
compare_int_unlock(chan, key);
}
uint32_t z_nrf_rtc_timer_compare_read(int32_t chan)
{
__ASSERT_NO_MSG(chan < CHAN_COUNT);
return nrf_rtc_cc_get(RTC, chan);
}
uint64_t z_nrf_rtc_timer_get_ticks(k_timeout_t t)
{
uint64_t curr_time;
int64_t curr_tick;
int64_t result;
int64_t abs_ticks;
do {
curr_time = z_nrf_rtc_timer_read();
curr_tick = sys_clock_tick_get();
} while (curr_time != z_nrf_rtc_timer_read());
abs_ticks = Z_TICK_ABS(t.ticks);
if (abs_ticks < 0) {
/* relative timeout */
return (t.ticks > COUNTER_SPAN) ?
-EINVAL : (curr_time + t.ticks);
}
/* absolute timeout */
result = abs_ticks - curr_tick;
if (result > COUNTER_SPAN) {
return -EINVAL;
}
return curr_time + result;
}
/** @brief Function safely sets absolute alarm.
*
* It assumes that provided value is less than COUNTER_HALF_SPAN from now.
* It detects late setting and also handle +1 cycle case.
*
* @param[in] chan A channel for which a new CC value is to be set.
*
* @param[in] abs_val An absolute value of CC register to be set.
*
* @returns CC value that was actually set. It is equal to @p abs_val or
* shifted ahead if @p abs_val was too near in the future (+1 case).
*/
static uint32_t set_absolute_alarm(int32_t chan, uint32_t abs_val)
{
uint32_t now;
uint32_t now2;
uint32_t cc_val = abs_val & COUNTER_MAX;
uint32_t prev_cc = get_comparator(chan);
do {
now = counter();
/* Handle case when previous event may generate an event.
* It is handled by setting CC to now (far in the future),
* in case previous event was set for next tick wait for half
* LF tick and clear event that may have been generated.
*/
set_comparator(chan, now);
if (counter_sub(prev_cc, now) == 1) {
/* It should wait for half of RTC tick 15.26us. As
* busy wait runs from different clock source thus
* wait longer to cover for discrepancy.
*/
k_busy_wait(19);
}
/* If requested cc_val is in the past or next tick, set to 2
* ticks from now. RTC may not generate event if CC is set for
* 1 tick from now.
*/
if (counter_sub(cc_val, now + 2) > COUNTER_HALF_SPAN) {
cc_val = now + 2;
}
event_clear(chan);
event_enable(chan);
set_comparator(chan, cc_val);
now2 = counter();
prev_cc = cc_val;
/* Rerun the algorithm if counter progressed during execution
* and cc_val is in the past or one tick from now. In such
* scenario, it is possible that event will not be generated.
* Reruning the algorithm will delay the alarm but ensure that
* event will be generated at the moment indicated by value in
* CC register.
*/
} while ((now2 != now) &&
(counter_sub(cc_val, now2 + 2) > COUNTER_HALF_SPAN));
return cc_val;
}
static int compare_set_nolocks(int32_t chan, uint64_t target_time,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data)
{
int ret = 0;
uint32_t cc_value = absolute_time_to_cc(target_time);
uint64_t curr_time = z_nrf_rtc_timer_read();
if (curr_time < target_time) {
if (target_time - curr_time > COUNTER_SPAN) {
/* Target time is too distant. */
return -EINVAL;
}
if (target_time != cc_data[chan].target_time) {
/* Target time is valid and is different than currently set.
* Set CC value.
*/
uint32_t cc_set = set_absolute_alarm(chan, cc_value);
target_time += counter_sub(cc_set, cc_value);
}
} else {
/* Force ISR handling when exiting from critical section. */
atomic_or(&force_isr_mask, BIT(chan));
}
cc_data[chan].target_time = target_time;
cc_data[chan].callback = handler;
cc_data[chan].user_context = user_data;
return ret;
}
static int compare_set(int32_t chan, uint64_t target_time,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data)
{
bool key;
key = compare_int_lock(chan);
int ret = compare_set_nolocks(chan, target_time, handler, user_data);
compare_int_unlock(chan, key);
return ret;
}
int z_nrf_rtc_timer_set(int32_t chan, uint64_t target_time,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data)
{
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
return compare_set(chan, target_time, handler, user_data);
}
void z_nrf_rtc_timer_abort(int32_t chan)
{
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
bool key = compare_int_lock(chan);
cc_data[chan].target_time = TARGET_TIME_INVALID;
event_clear(chan);
event_disable(chan);
(void)atomic_and(&force_isr_mask, ~BIT(chan));
compare_int_unlock(chan, key);
}
uint64_t z_nrf_rtc_timer_read(void)
{
uint64_t val = ((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH;
__DMB();
uint32_t cntr = counter();
val += cntr;
if (cntr < OVERFLOW_RISK_RANGE_END) {
/* `overflow_cnt` can have incorrect value due to still unhandled overflow or
* due to possibility that this code preempted overflow interrupt before final write
* of `overflow_cnt`. Update of `anchor` occurs far in time from this moment, so
* `anchor` is considered valid and stable. Because of this timing there is no risk
* of incorrect `anchor` value caused by non-atomic read of 64-bit `anchor`.
*/
if (val < anchor) {
/* Unhandled overflow, detected, let's add correction */
val += COUNTER_SPAN;
}
} else {
/* `overflow_cnt` is considered valid and stable in this range, no need to
* check validity using `anchor`
*/
}
return val;
}
static inline bool in_anchor_range(uint32_t cc_value)
{
return (cc_value >= ANCHOR_RANGE_START) && (cc_value < ANCHOR_RANGE_END);
}
static inline bool anchor_update(uint32_t cc_value)
{
/* Update anchor when far from overflow */
if (in_anchor_range(cc_value)) {
/* In this range `overflow_cnt` is considered valid and stable.
* Write of 64-bit `anchor` is non atomic. However it happens
* far in time from the moment the `anchor` is read in
* `z_nrf_rtc_timer_read`.
*/
anchor = (((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH) + cc_value;
return true;
}
return false;
}
static void sys_clock_timeout_handler(int32_t chan,
uint64_t expire_time,
void *user_data)
{
uint32_t cc_value = absolute_time_to_cc(expire_time);
uint64_t dticks = (expire_time - last_count) / CYC_PER_TICK;
last_count += dticks * CYC_PER_TICK;
bool anchor_updated = anchor_update(cc_value);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
/* protection is not needed because we are in the RTC interrupt
* so it won't get preempted by the interrupt.
*/
compare_set(chan, last_count + CYC_PER_TICK,
sys_clock_timeout_handler, NULL);
}
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
(int32_t)dticks : (dticks > 0));
if (cc_value == get_comparator(chan)) {
/* New value was not set. Set something that can update anchor.
* If anchor was updated we can enable same CC value to trigger
* interrupt after full cycle. Else set event in anchor update
* range. Since anchor was not updated we know that it's very
* far from mid point so setting is done without any protection.
*/
if (!anchor_updated) {
set_comparator(chan, COUNTER_HALF_SPAN);
}
event_enable(chan);
}
}
static bool channel_processing_check_and_clear(int32_t chan)
{
bool result = false;
uint32_t mcu_critical_state = full_int_lock();
if (nrf_rtc_int_enable_check(RTC, RTC_CHANNEL_INT_MASK(chan))) {
/* The processing of channel can be caused by CC match
* or be forced.
*/
result = atomic_and(&force_isr_mask, ~BIT(chan)) ||
nrf_rtc_event_check(RTC, RTC_CHANNEL_EVENT_ADDR(chan));
if (result) {
event_clear(chan);
}
}
full_int_unlock(mcu_critical_state);
return result;
}
static void process_channel(int32_t chan)
{
if (channel_processing_check_and_clear(chan)) {
void *user_context;
uint32_t mcu_critical_state;
uint64_t curr_time;
uint64_t expire_time;
z_nrf_rtc_timer_compare_handler_t handler = NULL;
curr_time = z_nrf_rtc_timer_read();
/* This critical section is used to provide atomic access to
* cc_data structure and prevent higher priority contexts
* (including ZLIs) from overwriting it.
*/
mcu_critical_state = full_int_lock();
/* If target_time is in the past or is equal to current time
* value, execute the handler.
*/
expire_time = cc_data[chan].target_time;
if (curr_time >= expire_time) {
handler = cc_data[chan].callback;
user_context = cc_data[chan].user_context;
cc_data[chan].callback = NULL;
cc_data[chan].target_time = TARGET_TIME_INVALID;
event_disable(chan);
}
full_int_unlock(mcu_critical_state);
if (handler) {
handler(chan, expire_time, user_context);
}
}
}
/* Note: this function has public linkage, and MUST have this
* particular name. The platform architecture itself doesn't care,
* but there is a test (tests/arch/arm_irq_vector_table) that needs
* to find it to it can set it in a custom vector table. Should
* probably better abstract that at some point (e.g. query and reset
* it by pointer at runtime, maybe?) so we don't have this leaky
* symbol.
*/
isr: Normalize usage of device instance through ISR The goal of this patch is to replace the 'void *' parameter by 'struct device *' if they use such variable or just 'const void *' on all relevant ISRs This will avoid not-so-nice const qualifier tweaks when device instances will be constant. Note that only the ISR passed to IRQ_CONNECT are of interest here. In order to do so, the script fix_isr.py below is necessary: from pathlib import Path import subprocess import pickle import mmap import sys import re import os cocci_template = """ @r_fix_isr_0 @ type ret_type; identifier P; identifier D; @@ -ret_type <!fn!>(void *P) +ret_type <!fn!>(const struct device *P) { ... ( const struct device *D = (const struct device *)P; | const struct device *D = P; ) ... } @r_fix_isr_1 @ type ret_type; identifier P; identifier D; @@ -ret_type <!fn!>(void *P) +ret_type <!fn!>(const struct device *P) { ... const struct device *D; ... ( D = (const struct device *)P; | D = P; ) ... } @r_fix_isr_2 @ type ret_type; identifier A; @@ -ret_type <!fn!>(void *A) +ret_type <!fn!>(const void *A) { ... } @r_fix_isr_3 @ const struct device *D; @@ -<!fn!>((void *)D); +<!fn!>(D); @r_fix_isr_4 @ type ret_type; identifier D; identifier P; @@ -ret_type <!fn!>(const struct device *P) +ret_type <!fn!>(const struct device *D) { ... ( -const struct device *D = (const struct device *)P; | -const struct device *D = P; ) ... } @r_fix_isr_5 @ type ret_type; identifier D; identifier P; @@ -ret_type <!fn!>(const struct device *P) +ret_type <!fn!>(const struct device *D) { ... -const struct device *D; ... ( -D = (const struct device *)P; | -D = P; ) ... } """ def find_isr(fn): db = [] data = None start = 0 try: with open(fn, 'r+') as f: data = str(mmap.mmap(f.fileno(), 0).read()) except Exception as e: return db while True: isr = "" irq = data.find('IRQ_CONNECT', start) while irq > -1: p = 1 arg = 1 p_o = data.find('(', irq) if p_o < 0: irq = -1 break; pos = p_o + 1 while p > 0: if data[pos] == ')': p -= 1 elif data[pos] == '(': p += 1 elif data[pos] == ',' and p == 1: arg += 1 if arg == 3: isr += data[pos] pos += 1 isr = isr.strip(',\\n\\t ') if isr not in db and len(isr) > 0: db.append(isr) start = pos break if irq < 0: break return db def patch_isr(fn, isr_list): if len(isr_list) <= 0: return for isr in isr_list: tmplt = cocci_template.replace('<!fn!>', isr) with open('/tmp/isr_fix.cocci', 'w') as f: f.write(tmplt) cmd = ['spatch', '--sp-file', '/tmp/isr_fix.cocci', '--in-place', fn] subprocess.run(cmd) def process_files(path): if path.is_file() and path.suffix in ['.h', '.c']: p = str(path.parent) + '/' + path.name isr_list = find_isr(p) patch_isr(p, isr_list) elif path.is_dir(): for p in path.iterdir(): process_files(p) if len(sys.argv) < 2: print("You need to provide a dir/file path") sys.exit(1) process_files(Path(sys.argv[1])) And is run: ./fix_isr.py <zephyr root directory> Finally, some files needed manual fixes such. Fixes #27399 Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
2020-06-17 14:58:56 +02:00
void rtc_nrf_isr(const void *arg)
{
ARG_UNUSED(arg);
if (nrf_rtc_int_enable_check(RTC, NRF_RTC_INT_OVERFLOW_MASK) &&
nrf_rtc_event_check(RTC, NRF_RTC_EVENT_OVERFLOW)) {
nrf_rtc_event_clear(RTC, NRF_RTC_EVENT_OVERFLOW);
overflow_cnt++;
}
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
process_channel(chan);
}
}
int32_t z_nrf_rtc_timer_chan_alloc(void)
{
int32_t chan;
atomic_val_t prev;
do {
chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
if (chan < 0) {
return -ENOMEM;
}
prev = atomic_and(&alloc_mask, ~BIT(chan));
} while (!(prev & BIT(chan)));
return chan;
}
void z_nrf_rtc_timer_chan_free(int32_t chan)
{
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
atomic_or(&alloc_mask, BIT(chan));
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
uint32_t cyc;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);
uint32_t unannounced = z_nrf_rtc_timer_read() - last_count;
/* If we haven't announced for more than half the 24-bit wrap
* duration, then force an announce to avoid loss of a wrap
* event. This can happen if new timeouts keep being set
* before the existing one triggers the interrupt.
*/
if (unannounced >= COUNTER_HALF_SPAN) {
ticks = 0;
}
/* Get the cycles from last_count to the tick boundary after
* the requested ticks have passed starting now.
*/
cyc = ticks * CYC_PER_TICK + 1 + unannounced;
cyc += (CYC_PER_TICK - 1);
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
/* Due to elapsed time the calculation above might produce a
* duration that laps the counter. Don't let it.
*/
if (cyc > MAX_CYCLES) {
cyc = MAX_CYCLES;
}
uint64_t target_time = cyc + last_count;
compare_set(0, target_time, sys_clock_timeout_handler, NULL);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
return (z_nrf_rtc_timer_read() - last_count) / CYC_PER_TICK;
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)z_nrf_rtc_timer_read();
}
static int sys_clock_driver_init(const struct device *dev)
{
ARG_UNUSED(dev);
static const enum nrf_lfclk_start_mode mode =
IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
CLOCK_CONTROL_NRF_LF_START_NOWAIT :
(IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
CLOCK_CONTROL_NRF_LF_START_STABLE);
/* TODO: replace with counter driver to access RTC */
nrf_rtc_prescaler_set(RTC, 0);
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
cc_data[chan].target_time = TARGET_TIME_INVALID;
nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
}
nrf_rtc_int_enable(RTC, NRF_RTC_INT_OVERFLOW_MASK);
NVIC_ClearPendingIRQ(RTC_IRQn);
IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
rtc_nrf_isr, 0, 0);
irq_enable(RTC_IRQn);
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START);
int_mask = BIT_MASK(CHAN_COUNT);
if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
}
uint32_t initial_timeout = IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
(COUNTER_HALF_SPAN - 1) :
(counter() + CYC_PER_TICK);
compare_set(0, initial_timeout, sys_clock_timeout_handler, NULL);
z_nrf_clock_control_lf_on(mode);
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);