zephyr/drivers/adc/adc_ads1x1x.c

685 lines
20 KiB
C
Raw Normal View History

/* TI ADS1X1X ADC
*
* Copyright (c) 2021 Facebook, Inc
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/util.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
LOG_MODULE_REGISTER(ADS1X1X, CONFIG_ADC_LOG_LEVEL);
#define ADS1X1X_CONFIG_OS BIT(15)
#define ADS1X1X_CONFIG_MUX(x) ((x) << 12)
#define ADS1X1X_CONFIG_PGA(x) ((x) << 9)
#define ADS1X1X_CONFIG_MODE BIT(8)
#define ADS1X1X_CONFIG_DR(x) ((x) << 5)
#define ADS1X1X_CONFIG_COMP_MODE BIT(4)
#define ADS1X1X_CONFIG_COMP_POL BIT(3)
#define ADS1X1X_CONFIG_COMP_LAT BIT(2)
#define ADS1X1X_CONFIG_COMP_QUE(x) (x)
enum ads1x1x_reg {
ADS1X1X_REG_CONV = 0x00,
ADS1X1X_REG_CONFIG = 0x01,
ADS1X1X_REG_LO_THRESH = 0x02,
ADS1X1X_REG_HI_THRESH = 0x03,
};
enum {
ADS1X15_CONFIG_MUX_DIFF_0_1 = 0,
ADS1X15_CONFIG_MUX_DIFF_0_3 = 1,
ADS1X15_CONFIG_MUX_DIFF_1_3 = 2,
ADS1X15_CONFIG_MUX_DIFF_2_3 = 3,
ADS1X15_CONFIG_MUX_SINGLE_0 = 4,
ADS1X15_CONFIG_MUX_SINGLE_1 = 5,
ADS1X15_CONFIG_MUX_SINGLE_2 = 6,
ADS1X15_CONFIG_MUX_SINGLE_3 = 7,
};
enum {
/* ADS111X, ADS101X samples per second */
/* 8, 128 samples per second */
ADS1X1X_CONFIG_DR_8_128 = 0,
/* 16, 250 samples per second */
ADS1X1X_CONFIG_DR_16_250 = 1,
/* 32, 490 samples per second */
ADS1X1X_CONFIG_DR_32_490 = 2,
/* 64, 920 samples per second */
ADS1X1X_CONFIG_DR_64_920 = 3,
/* 128, 1600 samples per second (default) */
ADS1X1X_CONFIG_DR_128_1600 = 4,
/* 250, 2400 samples per second */
ADS1X1X_CONFIG_DR_250_2400 = 5,
/* 475, 3300 samples per second */
ADS1X1X_CONFIG_DR_475_3300 = 6,
/* 860, 3300 samples per second */
ADS1X1X_CONFIG_DR_860_3300 = 7,
/* Default data rate */
ADS1X1X_CONFIG_DR_DEFAULT = ADS1X1X_CONFIG_DR_128_1600
};
enum {
/* +/-6.144V range = Gain 1/3 */
ADS1X1X_CONFIG_PGA_6144 = 0,
/* +/-4.096V range = Gain 1/2 */
ADS1X1X_CONFIG_PGA_4096 = 1,
/* +/-2.048V range = Gain 1 (default) */
ADS1X1X_CONFIG_PGA_2048 = 2,
/* +/-1.024V range = Gain 2 */
ADS1X1X_CONFIG_PGA_1024 = 3,
/* +/-0.512V range = Gain 4 */
ADS1X1X_CONFIG_PGA_512 = 4,
/* +/-0.256V range = Gain 8 */
ADS1X1X_CONFIG_PGA_256 = 5
};
enum {
ADS1X1X_CONFIG_MODE_CONTINUOUS = 0,
ADS1X1X_CONFIG_MODE_SINGLE_SHOT = 1,
};
enum {
/* Traditional comparator with hysteresis (default) */
ADS1X1X_CONFIG_COMP_MODE_TRADITIONAL = 0,
/* Window comparator */
ADS1X1X_CONFIG_COMP_MODE_WINDOW = 1
};
enum {
/* ALERT/RDY pin is low when active (default) */
ADS1X1X_CONFIG_COMP_POLARITY_ACTIVE_LO = 0,
/* ALERT/RDY pin is high when active */
ADS1X1X_CONFIG_COMP_POLARITY_ACTIVE_HI = 1
};
enum {
/* Non-latching comparator (default) */
ADS1X1X_CONFIG_COMP_NON_LATCHING = 0,
/* Latching comparator */
ADS1X1X_CONFIG_COMP_LATCHING = 1
};
enum {
/* Assert ALERT/RDY after one conversions */
ADS1X1X_CONFIG_COMP_QUEUE_1 = 0,
/* Assert ALERT/RDY after two conversions */
ADS1X1X_CONFIG_COMP_QUEUE_2 = 1,
/* Assert ALERT/RDY after four conversions */
ADS1X1X_CONFIG_COMP_QUEUE_4 = 2,
/* Disable the comparator and put ALERT/RDY in high state (default) */
ADS1X1X_CONFIG_COMP_QUEUE_NONE = 3
};
struct ads1x1x_config {
struct i2c_dt_spec bus;
const uint32_t odr_delay[8];
uint8_t resolution;
bool multiplexer;
bool pga;
};
struct ads1x1x_data {
const struct device *dev;
struct adc_context ctx;
k_timeout_t ready_time;
struct k_sem acq_sem;
int16_t *buffer;
int16_t *repeat_buffer;
struct k_thread thread;
bool differential;
K_THREAD_STACK_MEMBER(stack, CONFIG_ADC_ADS1X1X_ACQUISITION_THREAD_STACK_SIZE);
};
static int ads1x1x_read_reg(const struct device *dev, enum ads1x1x_reg reg_addr, uint16_t *buf)
{
const struct ads1x1x_config *config = dev->config;
uint16_t reg_val;
int ret;
ret = i2c_burst_read_dt(&config->bus, reg_addr, (uint8_t *)&reg_val, sizeof(reg_val));
if (ret != 0) {
LOG_ERR("ADS1X1X[0x%X]: error reading register 0x%X (%d)", config->bus.addr,
reg_addr, ret);
return ret;
}
*buf = sys_be16_to_cpu(reg_val);
return 0;
}
static int ads1x1x_write_reg(const struct device *dev, enum ads1x1x_reg reg_addr, uint16_t reg_val)
{
const struct ads1x1x_config *config = dev->config;
uint8_t buf[3];
int ret;
buf[0] = reg_addr;
sys_put_be16(reg_val, &buf[1]);
ret = i2c_write_dt(&config->bus, buf, sizeof(buf));
if (ret != 0) {
LOG_ERR("ADS1X1X[0x%X]: error writing register 0x%X (%d)", config->bus.addr,
reg_addr, ret);
return ret;
}
return 0;
}
static int ads1x1x_start_conversion(const struct device *dev)
{
/* send start sampling command */
uint16_t config;
ads1x1x_read_reg(dev, ADS1X1X_REG_CONFIG, &config);
config |= ADS1X1X_CONFIG_OS;
ads1x1x_write_reg(dev, ADS1X1X_REG_CONFIG, config);
return 0;
}
static inline int ads1x1x_acq_time_to_dr(const struct device *dev, uint16_t acq_time)
{
struct ads1x1x_data *data = dev->data;
const struct ads1x1x_config *ads_config = dev->config;
const uint32_t *odr_delay = ads_config->odr_delay;
uint32_t odr_delay_us = 0;
int odr = -EINVAL;
uint16_t acq_value = ADC_ACQ_TIME_VALUE(acq_time);
/* The ADS1x1x uses samples per seconds units with the lowest being 8SPS
* and with acquisition_time only having 14b for time, this will not fit
* within here for microsecond units. Use Tick units and allow the user to
* specify the ODR directly.
*/
if (acq_time != ADC_ACQ_TIME_DEFAULT && ADC_ACQ_TIME_UNIT(acq_time) != ADC_ACQ_TIME_TICKS) {
return -EINVAL;
}
if (acq_time == ADC_ACQ_TIME_DEFAULT) {
odr = ADS1X1X_CONFIG_DR_DEFAULT;
odr_delay_us = odr_delay[ADS1X1X_CONFIG_DR_DEFAULT];
} else {
switch (acq_value) {
case ADS1X1X_CONFIG_DR_8_128:
odr = ADS1X1X_CONFIG_DR_8_128;
odr_delay_us = odr_delay[ADS1X1X_CONFIG_DR_8_128];
break;
case ADS1X1X_CONFIG_DR_16_250:
odr = ADS1X1X_CONFIG_DR_16_250;
odr_delay_us = odr_delay[ADS1X1X_CONFIG_DR_16_250];
break;
case ADS1X1X_CONFIG_DR_32_490:
odr = ADS1X1X_CONFIG_DR_32_490;
odr_delay_us = odr_delay[ADS1X1X_CONFIG_DR_32_490];
break;
case ADS1X1X_CONFIG_DR_64_920:
odr = ADS1X1X_CONFIG_DR_64_920;
odr_delay_us = odr_delay[ADS1X1X_CONFIG_DR_64_920];
break;
case ADS1X1X_CONFIG_DR_128_1600:
odr = ADS1X1X_CONFIG_DR_128_1600;
odr_delay_us = odr_delay[ADS1X1X_CONFIG_DR_128_1600];
break;
case ADS1X1X_CONFIG_DR_250_2400:
odr = ADS1X1X_CONFIG_DR_250_2400;
odr_delay_us = odr_delay[ADS1X1X_CONFIG_DR_250_2400];
break;
case ADS1X1X_CONFIG_DR_475_3300:
odr = ADS1X1X_CONFIG_DR_475_3300;
odr_delay_us = odr_delay[ADS1X1X_CONFIG_DR_475_3300];
break;
case ADS1X1X_CONFIG_DR_860_3300:
odr = ADS1X1X_CONFIG_DR_860_3300;
odr_delay_us = odr_delay[ADS1X1X_CONFIG_DR_860_3300];
break;
default:
break;
}
}
/* As per the datasheet, 25us is needed to wake-up from power down mode
*/
odr_delay_us += 25;
data->ready_time = K_USEC(odr_delay_us);
return odr;
}
static int ads1x1x_wait_data_ready(const struct device *dev)
{
int rc;
struct ads1x1x_data *data = dev->data;
k_sleep(data->ready_time);
uint16_t status = 0;
rc = ads1x1x_read_reg(dev, ADS1X1X_REG_CONFIG, &status);
if (rc != 0) {
return rc;
}
while (!(status & ADS1X1X_CONFIG_OS)) {
k_sleep(K_USEC(100));
rc = ads1x1x_read_reg(dev, ADS1X1X_REG_CONFIG, &status);
if (rc != 0) {
return rc;
}
}
return rc;
}
static int ads1x1x_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct ads1x1x_config *ads_config = dev->config;
struct ads1x1x_data *data = dev->data;
uint16_t config = 0;
int dr = 0;
if (channel_cfg->channel_id != 0) {
LOG_ERR("unsupported channel id '%d'", channel_cfg->channel_id);
return -ENOTSUP;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("unsupported channel reference type '%d'", channel_cfg->reference);
return -ENOTSUP;
}
if (ads_config->multiplexer) {
/* the device has an input multiplexer */
if (channel_cfg->differential) {
if (channel_cfg->input_positive == 0 && channel_cfg->input_negative == 1) {
config |= ADS1X1X_CONFIG_MUX(ADS1X15_CONFIG_MUX_DIFF_0_1);
} else if (channel_cfg->input_positive == 0 &&
channel_cfg->input_negative == 3) {
config |= ADS1X1X_CONFIG_MUX(ADS1X15_CONFIG_MUX_DIFF_0_3);
} else if (channel_cfg->input_positive == 1 &&
channel_cfg->input_negative == 3) {
config |= ADS1X1X_CONFIG_MUX(ADS1X15_CONFIG_MUX_DIFF_1_3);
} else if (channel_cfg->input_positive == 2 &&
channel_cfg->input_negative == 3) {
config |= ADS1X1X_CONFIG_MUX(ADS1X15_CONFIG_MUX_DIFF_2_3);
} else {
LOG_ERR("unsupported input positive '%d' and input negative '%d'",
channel_cfg->input_positive, channel_cfg->input_negative);
return -ENOTSUP;
}
} else {
if (channel_cfg->input_positive == 0) {
config |= ADS1X1X_CONFIG_MUX(ADS1X15_CONFIG_MUX_SINGLE_0);
} else if (channel_cfg->input_positive == 1) {
config |= ADS1X1X_CONFIG_MUX(ADS1X15_CONFIG_MUX_SINGLE_1);
} else if (channel_cfg->input_positive == 2) {
config |= ADS1X1X_CONFIG_MUX(ADS1X15_CONFIG_MUX_SINGLE_2);
} else if (channel_cfg->input_positive == 3) {
config |= ADS1X1X_CONFIG_MUX(ADS1X15_CONFIG_MUX_SINGLE_3);
} else {
LOG_ERR("unsupported input positive '%d'",
channel_cfg->input_positive);
return -ENOTSUP;
}
}
} else {
/* only differential supported without multiplexer */
if (!((channel_cfg->differential) &&
(channel_cfg->input_positive == 0 && channel_cfg->input_negative == 1))) {
LOG_ERR("unsupported input positive '%d' and input negative '%d'",
channel_cfg->input_positive, channel_cfg->input_negative);
return -ENOTSUP;
}
}
/* store differential mode to determine supported resolution */
data->differential = channel_cfg->differential;
dr = ads1x1x_acq_time_to_dr(dev, channel_cfg->acquisition_time);
if (dr < 0) {
LOG_ERR("unsupported channel acquisition time 0x%02x",
channel_cfg->acquisition_time);
return -ENOTSUP;
}
config |= ADS1X1X_CONFIG_DR(dr);
if (ads_config->pga) {
/* programmable gain amplifier support */
switch (channel_cfg->gain) {
case ADC_GAIN_1_3:
config |= ADS1X1X_CONFIG_PGA(ADS1X1X_CONFIG_PGA_6144);
break;
case ADC_GAIN_1_2:
config |= ADS1X1X_CONFIG_PGA(ADS1X1X_CONFIG_PGA_4096);
break;
case ADC_GAIN_1:
config |= ADS1X1X_CONFIG_PGA(ADS1X1X_CONFIG_PGA_2048);
break;
case ADC_GAIN_2:
config |= ADS1X1X_CONFIG_PGA(ADS1X1X_CONFIG_PGA_1024);
break;
case ADC_GAIN_4:
config |= ADS1X1X_CONFIG_PGA(ADS1X1X_CONFIG_PGA_512);
break;
case ADC_GAIN_8:
config |= ADS1X1X_CONFIG_PGA(ADS1X1X_CONFIG_PGA_256);
break;
default:
LOG_ERR("unsupported channel gain '%d'", channel_cfg->gain);
return -ENOTSUP;
}
} else {
/* no programmable gain amplifier, so only allow ADC_GAIN_1 */
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("unsupported channel gain '%d'", channel_cfg->gain);
return -ENOTSUP;
}
}
/* Only single shot supported */
config |= ADS1X1X_CONFIG_MODE;
/* disable comparator */
config |= ADS1X1X_CONFIG_COMP_MODE;
return ads1x1x_write_reg(dev, ADS1X1X_REG_CONFIG, config);
}
static int ads1x1x_validate_buffer_size(const struct adc_sequence *sequence)
{
size_t needed = sizeof(int16_t);
if (sequence->options) {
needed *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed) {
return -ENOMEM;
}
return 0;
}
static int ads1x1x_validate_sequence(const struct device *dev, const struct adc_sequence *sequence)
{
const struct ads1x1x_config *config = dev->config;
struct ads1x1x_data *data = dev->data;
uint8_t resolution = data->differential ? config->resolution : config->resolution - 1;
int err;
if (sequence->resolution != resolution) {
LOG_ERR("unsupported resolution %d", sequence->resolution);
return -ENOTSUP;
}
if (sequence->channels != BIT(0)) {
LOG_ERR("only channel 0 supported");
return -ENOTSUP;
}
if (sequence->oversampling) {
LOG_ERR("oversampling not supported");
return -ENOTSUP;
}
err = ads1x1x_validate_buffer_size(sequence);
if (err) {
LOG_ERR("buffer size too small");
return -ENOTSUP;
}
return 0;
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling)
{
struct ads1x1x_data *data = CONTAINER_OF(ctx, struct ads1x1x_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct ads1x1x_data *data = CONTAINER_OF(ctx, struct ads1x1x_data, ctx);
data->repeat_buffer = data->buffer;
ads1x1x_start_conversion(data->dev);
k_sem_give(&data->acq_sem);
}
static int ads1x1x_adc_start_read(const struct device *dev, const struct adc_sequence *sequence)
{
int rc;
struct ads1x1x_data *data = dev->data;
rc = ads1x1x_validate_sequence(dev, sequence);
if (rc != 0) {
return rc;
}
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int ads1x1x_adc_read_async(const struct device *dev, const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
int rc;
struct ads1x1x_data *data = dev->data;
adc_context_lock(&data->ctx, async ? true : false, async);
rc = ads1x1x_adc_start_read(dev, sequence);
adc_context_release(&data->ctx, rc);
return rc;
}
static int ads1x1x_adc_perform_read(const struct device *dev)
{
int rc;
struct ads1x1x_data *data = dev->data;
const struct ads1x1x_config *config = dev->config;
int16_t buf;
rc = ads1x1x_read_reg(dev, ADS1X1X_REG_CONV, &buf);
if (rc != 0) {
adc_context_complete(&data->ctx, rc);
return rc;
}
/* The ads101x stores it's 12b data in the upper part
* while the ads111x uses all 16b in the register, so
* shift down. Data is also signed, so perform
* division rather than shifting
*/
*data->buffer++ = buf / (1 << (16 - config->resolution));
adc_context_on_sampling_done(&data->ctx, dev);
return rc;
}
static int ads1x1x_read(const struct device *dev, const struct adc_sequence *sequence)
{
return ads1x1x_adc_read_async(dev, sequence, NULL);
}
static void ads1x1x_acquisition_thread(const struct device *dev)
{
struct ads1x1x_data *data = dev->data;
int rc;
while (true) {
k_sem_take(&data->acq_sem, K_FOREVER);
rc = ads1x1x_wait_data_ready(dev);
if (rc != 0) {
LOG_ERR("failed to get ready status (err %d)", rc);
adc_context_complete(&data->ctx, rc);
break;
}
ads1x1x_adc_perform_read(dev);
}
}
static int ads1x1x_init(const struct device *dev)
{
const struct ads1x1x_config *config = dev->config;
struct ads1x1x_data *data = dev->data;
data->dev = dev;
k_sem_init(&data->acq_sem, 0, 1);
if (!device_is_ready(config->bus.bus)) {
LOG_ERR("I2C bus %s not ready", config->bus.bus->name);
return -ENODEV;
}
const k_tid_t tid =
k_thread_create(&data->thread, data->stack, K_THREAD_STACK_SIZEOF(data->stack),
(k_thread_entry_t)ads1x1x_acquisition_thread, (void *)dev, NULL,
NULL, CONFIG_ADC_ADS1X1X_ACQUISITION_THREAD_PRIO, 0, K_NO_WAIT);
k_thread_name_set(tid, "adc_ads1x1x");
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api ads1x1x_api = {
.channel_setup = ads1x1x_channel_setup,
.read = ads1x1x_read,
.ref_internal = 2048,
#ifdef CONFIG_ADC_ASYNC
.read_async = ads1x1x_adc_read_async,
#endif
};
#define DT_INST_ADS1X1X(inst, t) DT_INST(inst, ti_ads##t)
#define ADS1X1X_INIT(t, n, odr_delay_us, res, mux, pgab) \
static const struct ads1x1x_config ads##t##_config_##n = { \
.bus = I2C_DT_SPEC_GET(DT_INST_ADS1X1X(n, t)), \
.odr_delay = odr_delay_us, \
.resolution = res, \
.multiplexer = mux, \
.pga = pgab, \
}; \
static struct ads1x1x_data ads##t##_data_##n = { \
ADC_CONTEXT_INIT_LOCK(ads##t##_data_##n, ctx), \
ADC_CONTEXT_INIT_TIMER(ads##t##_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(ads##t##_data_##n, ctx), \
}; \
DEVICE_DT_DEFINE(DT_INST_ADS1X1X(n, t), ads1x1x_init, NULL, &ads##t##_data_##n, \
&ads##t##_config_##n, POST_KERNEL, CONFIG_ADC_ADS1X1X_INIT_PRIORITY, \
&ads1x1x_api);
/* The ADS111X provides 16 bits of data in binary two's complement format
* A positive full-scale (+FS) input produces an output code of 7FFFh and a
* negative full-scale (FS) input produces an output code of 8000h. Single
* ended signal measurements only only use the positive code range from
* 0000h to 7FFFh
*/
#define ADS111X_RESOLUTION 16
/*
* Approximated ADS111x acquisition times in microseconds. These are
* used for the initial delay when polling for data ready.
* {8 SPS, 16 SPS, 32 SPS, 64 SPS, 128 SPS (default), 250 SPS, 475 SPS, 860 SPS}
*/
#define ADS111X_ODR_DELAY_US \
{ \
125000, 62500, 31250, 15625, 7813, 4000, 2105, 1163 \
}
/*
* ADS1115: 16 bit, multiplexer, programmable gain amplifier
*/
#define ADS1115_INIT(n) ADS1X1X_INIT(1115, n, ADS111X_ODR_DELAY_US, ADS111X_RESOLUTION, true, true)
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT ti_ads1115
DT_INST_FOREACH_STATUS_OKAY(ADS1115_INIT)
/*
* ADS1114: 16 bit, no multiplexer, programmable gain amplifier
*/
#define ADS1114_INIT(n) ADS1X1X_INIT(1114, n, ADS111X_ODR_DELAY_US, ADS111X_RESOLUTION, false, true)
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT ti_ads1114
DT_INST_FOREACH_STATUS_OKAY(ADS1114_INIT)
/*
* ADS1113: 16 bit, no multiplexer, no programmable gain amplifier
*/
#define ADS1113_INIT(n) \
ADS1X1X_INIT(1113, n, ADS111X_ODR_DELAY_US, ADS111X_RESOLUTION, false, false)
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT ti_ads1113
DT_INST_FOREACH_STATUS_OKAY(ADS1113_INIT)
/* The ADS101X provides 12 bits of data in binary two's complement format
* A positive full-scale (+FS) input produces an output code of 7FFh and a
* negative full-scale (FS) input produces an output code of 800h. Single
* ended signal measurements only only use the positive code range from
* 000h to 7FFh
*/
#define ADS101X_RESOLUTION 12
/*
* Approximated ADS101x acquisition times in microseconds. These are
* used for the initial delay when polling for data ready.
* {128 SPS, 250 SPS, 490 SPS, 920 SPS, 1600 SPS (default), 2400 SPS, 3300 SPS, 3300 SPS}
*/
#define ADS101X_ODR_DELAY_US \
{ \
7813, 4000, 2041, 1087, 625, 417, 303, 303 \
}
/*
* ADS1015: 12 bit, multiplexer, programmable gain amplifier
*/
#define ADS1015_INIT(n) ADS1X1X_INIT(1015, n, ADS101X_ODR_DELAY_US, ADS101X_RESOLUTION, true, true)
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT ti_ads1015
DT_INST_FOREACH_STATUS_OKAY(ADS1015_INIT)
/*
* ADS1014: 12 bit, no multiplexer, programmable gain amplifier
*/
#define ADS1014_INIT(n) ADS1X1X_INIT(1014, n, ADS101X_ODR_DELAY_US, ADS101X_RESOLUTION, false, true)
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT ti_ads1014
DT_INST_FOREACH_STATUS_OKAY(ADS1014_INIT)
/*
* ADS1013: 12 bit, no multiplexer, no programmable gain amplifier
*/
#define ADS1013_INIT(n) \
ADS1X1X_INIT(1013, n, ADS101X_ODR_DELAY_US, ADS101X_RESOLUTION, false, false)
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT ti_ads1013
DT_INST_FOREACH_STATUS_OKAY(ADS1013_INIT)