zephyr/drivers/ethernet/dsa_ksz8xxx.c

1115 lines
34 KiB
C
Raw Normal View History

/*
* Copyright (c) 2020 DENX Software Engineering GmbH
* Lukasz Majewski <lukma@denx.de>
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_MODULE_NAME dsa
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME, CONFIG_ETHERNET_LOG_LEVEL);
#include <zephyr/device.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/kernel.h>
#include <errno.h>
#include <zephyr/sys/util.h>
#include <zephyr/net/ethernet.h>
#include <zephyr/linker/sections.h>
#if defined(CONFIG_DSA_SPI)
#include <zephyr/drivers/spi.h>
#else
#error "No communication bus defined"
#endif
#if CONFIG_DSA_KSZ8863
#define DT_DRV_COMPAT microchip_ksz8863
#include "dsa_ksz8863.h"
#elif CONFIG_DSA_KSZ8794
#define DT_DRV_COMPAT microchip_ksz8794
#include "dsa_ksz8794.h"
#else
#error "Unsupported KSZ chipset"
#endif
struct ksz8xxx_data {
int iface_init_count;
bool is_init;
#if defined(CONFIG_DSA_SPI)
struct spi_dt_spec spi;
#endif
};
#define PRV_DATA(ctx) ((struct ksz8xxx_data *const)(ctx)->prv_data)
static void dsa_ksz8xxx_write_reg(const struct ksz8xxx_data *pdev,
uint16_t reg_addr, uint8_t value)
{
#if defined(CONFIG_DSA_SPI)
uint8_t buf[3];
const struct spi_buf tx_buf = {
.buf = buf,
.len = 3
};
const struct spi_buf_set tx = {
.buffers = &tx_buf,
.count = 1
};
buf[0] = KSZ8XXX_SPI_CMD_WR | ((reg_addr >> 7) & 0x1F);
buf[1] = (reg_addr << 1) & 0xFE;
buf[2] = value;
spi_write_dt(&pdev->spi, &tx);
#endif
}
static void dsa_ksz8xxx_read_reg(const struct ksz8xxx_data *pdev,
uint16_t reg_addr, uint8_t *value)
{
#if defined(CONFIG_DSA_SPI)
uint8_t buf[3];
const struct spi_buf tx_buf = {
.buf = buf,
.len = 3
};
const struct spi_buf_set tx = {
.buffers = &tx_buf,
.count = 1
};
struct spi_buf rx_buf = {
.buf = buf,
.len = 3
};
const struct spi_buf_set rx = {
.buffers = &rx_buf,
.count = 1
};
buf[0] = KSZ8XXX_SPI_CMD_RD | ((reg_addr >> 7) & 0x1F);
buf[1] = (reg_addr << 1) & 0xFE;
buf[2] = 0x0;
if (!spi_transceive_dt(&pdev->spi, &tx, &rx)) {
*value = buf[2];
} else {
LOG_DBG("Failure while reading register 0x%04x", reg_addr);
*value = 0U;
}
#endif
}
static bool dsa_ksz8xxx_port_link_status(struct ksz8xxx_data *pdev,
uint8_t port)
{
uint8_t tmp;
if (port < KSZ8XXX_FIRST_PORT || port > KSZ8XXX_LAST_PORT ||
port == KSZ8XXX_CPU_PORT) {
return false;
}
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_STAT2_PORTn(port), &tmp);
return tmp & KSZ8XXX_STAT2_LINK_GOOD;
}
#if !DT_INST_NODE_HAS_PROP(0, reset_gpios)
static void dsa_ksz8xxx_soft_reset(struct ksz8xxx_data *pdev)
{
/* reset switch */
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_RESET_REG,
KSZ8XXX_RESET_SET);
k_busy_wait(KSZ8XXX_SOFT_RESET_DURATION);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_RESET_REG, KSZ8XXX_RESET_CLEAR);
}
#endif
static int dsa_ksz8xxx_probe(struct ksz8xxx_data *pdev)
{
uint16_t timeout = 100;
uint8_t val[2], tmp;
/*
* Wait for SPI of KSZ8794 being fully operational - up to 10 ms
*/
for (timeout = 100, tmp = 0;
tmp != KSZ8XXX_CHIP_ID0_ID_DEFAULT && timeout > 0; timeout--) {
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_CHIP_ID0, &tmp);
k_busy_wait(100);
}
if (timeout == 0) {
LOG_ERR("KSZ8794: No SPI communication!");
return -ENODEV;
}
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_CHIP_ID0, &val[0]);
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_CHIP_ID1, &val[1]);
if (val[0] != KSZ8XXX_CHIP_ID0_ID_DEFAULT ||
val[1] != KSZ8XXX_CHIP_ID1_ID_DEFAULT) {
LOG_ERR("Chip ID mismatch. "
"Expected %02x%02x but found %02x%02x",
KSZ8XXX_CHIP_ID0_ID_DEFAULT,
KSZ8XXX_CHIP_ID1_ID_DEFAULT,
val[0],
val[1]);
return -ENODEV;
}
LOG_DBG("KSZ8794: ID0: 0x%x ID1: 0x%x timeout: %d", val[1], val[0],
timeout);
return 0;
}
static int dsa_ksz8xxx_write_static_mac_table(struct ksz8xxx_data *pdev,
uint16_t entry_addr, uint8_t *p)
{
/*
* According to KSZ8794 manual - write to static mac address table
* requires write to indirect registers:
* Write register 0x71 (113)
* ....
* Write register 0x78 (120)
*
* Then:
* Write to Register 110 with 0x00 (write static table selected)
* Write to Register 111 with 0x0x (trigger the write operation, to
* table entry x)
*/
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_DATA_7, p[7]);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_DATA_6, p[6]);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_DATA_5, p[5]);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_DATA_4, p[4]);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_DATA_3, p[3]);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_DATA_2, p[2]);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_DATA_1, p[1]);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_DATA_0, p[0]);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_CTRL_0, 0x00);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_CTRL_1, entry_addr);
return 0;
}
static int dsa_ksz8xxx_set_static_mac_table(struct ksz8xxx_data *pdev,
const uint8_t *mac, uint8_t fw_port,
uint16_t entry_idx)
{
/*
* The data in uint8_t buf[] buffer is stored in the little endian
* format, as it eases programming proper KSZ8794 registers.
*/
uint8_t buf[8];
buf[7] = 0;
/* Prepare entry for static MAC address table */
buf[5] = mac[0];
buf[4] = mac[1];
buf[3] = mac[2];
buf[2] = mac[3];
buf[1] = mac[4];
buf[0] = mac[5];
buf[6] = fw_port;
buf[6] |= KSZ8XXX_STATIC_MAC_TABLE_VALID;
buf[6] |= KSZ8XXX_STATIC_MAC_TABLE_OVRD;
dsa_ksz8xxx_write_static_mac_table(pdev, entry_idx, buf);
return 0;
}
static int dsa_ksz8xxx_read_static_mac_table(struct ksz8xxx_data *pdev,
uint16_t entry_addr, uint8_t *p)
{
/*
* According to KSZ8794 manual - read from static mac address table
* requires reads from indirect registers:
*
* Write to Register 110 with 0x10 (read static table selected)
* Write to Register 111 with 0x0x (trigger the read operation, to
* table entry x)
*
* Then:
* Write register 0x71 (113)
* ....
* Write register 0x78 (120)
*
*/
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_CTRL_0, 0x10);
dsa_ksz8xxx_write_reg(pdev, KSZ8XXX_REG_IND_CTRL_1, entry_addr);
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_REG_IND_DATA_7, &p[7]);
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_REG_IND_DATA_6, &p[6]);
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_REG_IND_DATA_5, &p[5]);
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_REG_IND_DATA_4, &p[4]);
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_REG_IND_DATA_3, &p[3]);
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_REG_IND_DATA_2, &p[2]);
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_REG_IND_DATA_1, &p[1]);
dsa_ksz8xxx_read_reg(pdev, KSZ8XXX_REG_IND_DATA_0, &p[0]);
return 0;
}
#if CONFIG_DSA_KSZ8863
static int dsa_ksz8xxx_switch_setup(const struct ksz8xxx_data *pdev)
{
uint8_t tmp, i;
/*
* Loop through ports - The same setup when tail tagging is enabled or
* disabled.
*/
for (i = KSZ8XXX_FIRST_PORT; i <= KSZ8XXX_LAST_PORT; i++) {
/* Enable transmission, reception and switch address learning */
dsa_ksz8xxx_read_reg(pdev, KSZ8863_CTRL2_PORTn(i), &tmp);
tmp |= KSZ8863_CTRL2_TRANSMIT_EN;
tmp |= KSZ8863_CTRL2_RECEIVE_EN;
tmp &= ~KSZ8863_CTRL2_LEARNING_DIS;
dsa_ksz8xxx_write_reg(pdev, KSZ8863_CTRL2_PORTn(i), tmp);
}
#if defined(CONFIG_DSA_KSZ_TAIL_TAGGING)
/* Enable tail tag feature */
dsa_ksz8xxx_read_reg(pdev, KSZ8863_GLOBAL_CTRL10, &tmp);
tmp |= KSZ8863_GLOBAL_CTRL1_TAIL_TAG_EN;
dsa_ksz8xxx_write_reg(pdev, KSZ8863_GLOBAL_CTRL10, tmp);
#else
/* Disable tail tag feature */
dsa_ksz8xxx_read_reg(pdev, KSZ8863_GLOBAL_CTRL1, &tmp);
tmp &= ~KSZ8863_GLOBAL_CTRL1_TAIL_TAG_EN;
dsa_ksz8xxx_write_reg(pdev, KSZ8863_GLOBAL_CTRL1, tmp);
#endif
dsa_ksz8xxx_read_reg(pdev, KSZ8863_GLOBAL_CTRL2, &tmp);
tmp &= ~KSZ8863_GLOBAL_CTRL2_LEG_MAX_PKT_SIZ_CHK_ENA;
dsa_ksz8xxx_write_reg(pdev, KSZ8863_GLOBAL_CTRL2, tmp);
return 0;
}
#endif
#if CONFIG_DSA_KSZ8794
static int dsa_ksz8xxx_switch_setup(struct ksz8xxx_data *pdev)
{
uint8_t tmp, i;
/*
* Loop through ports - The same setup when tail tagging is enabled or
* disabled.
*/
for (i = KSZ8XXX_FIRST_PORT; i <= KSZ8XXX_LAST_PORT; i++) {
/* Enable transmission, reception and switch address learning */
dsa_ksz8xxx_read_reg(pdev, KSZ8794_CTRL2_PORTn(i), &tmp);
tmp |= KSZ8794_CTRL2_TRANSMIT_EN;
tmp |= KSZ8794_CTRL2_RECEIVE_EN;
tmp &= ~KSZ8794_CTRL2_LEARNING_DIS;
dsa_ksz8xxx_write_reg(pdev, KSZ8794_CTRL2_PORTn(i), tmp);
}
#if defined(CONFIG_DSA_KSZ_TAIL_TAGGING)
/* Enable tail tag feature */
dsa_ksz8xxx_read_reg(pdev, KSZ8794_GLOBAL_CTRL10, &tmp);
tmp |= KSZ8794_GLOBAL_CTRL10_TAIL_TAG_EN;
dsa_ksz8xxx_write_reg(pdev, KSZ8794_GLOBAL_CTRL10, tmp);
#else
/* Disable tail tag feature */
dsa_ksz8xxx_read_reg(pdev, KSZ8794_GLOBAL_CTRL10, &tmp);
tmp &= ~KSZ8794_GLOBAL_CTRL10_TAIL_TAG_EN;
dsa_ksz8xxx_write_reg(pdev, KSZ8794_GLOBAL_CTRL10, tmp);
#endif
dsa_ksz8xxx_read_reg(pdev, KSZ8794_PORT4_IF_CTRL6, &tmp);
LOG_DBG("KSZ8794: CONTROL6: 0x%x port4", tmp);
dsa_ksz8xxx_read_reg(pdev, KSZ8794_PORT4_CTRL2, &tmp);
LOG_DBG("KSZ8794: CONTROL2: 0x%x port4", tmp);
dsa_ksz8xxx_read_reg(pdev, KSZ8794_GLOBAL_CTRL2, &tmp);
tmp |= KSZ8794_GLOBAL_CTRL2_LEG_MAX_PKT_SIZ_CHK_DIS;
dsa_ksz8xxx_write_reg(pdev, KSZ8794_GLOBAL_CTRL2, tmp);
return 0;
}
#if DT_INST_NODE_HAS_PROP(0, workaround)
/*
* Workaround 0x01
* Solution for Short Cable Problems with the KSZ8795 Family
*
* Title
* Solution for Short Cable Problems with the KSZ8795 Family
*
* https://microchipsupport.force.com/s/article/Solution-for-Short-Cable-
* Problems-with-the-KSZ8795-Family
*
* Problem Description:
* 1) The KSZ8795 family parts might be not link when connected through a few
* type of short cable (<3m).
* 2) There may be a link-up issue in the capacitor AC coupling mode for port
* to port or board to board cases.
*
* Answer
* Root Cause:
* KSZ8795 family switches with integrated Ethernet PHY that has a DSP based
* equalizer EQ that can balance the signal received to adapt various cable
* length characteristics. The equalizer default settings amplify the signal
* coming in to get more accurate readings from low amplitude signals.
* When using some type of short cable (for example, CAT-6 cable with low
* attenuation to high frequencies signal vs. CAT-5 cable) or board to board
* connection, or port to port with capacitor AC coupling connection, the signal
* is amplified too much and cause the link-up failed with same boost setting in
* the equalizer EQ.
*
* Solution/Workaround:
* Write a DSP control register that is indirect register (0x3c) to optimize the
* equalizer EQ to cover above corner cases.
* w 6e a0 //write the indirect register
* w 6f 3c //assign the indirect hidden register address (0x3c)
* w a0 15 //write 0x15 to REG (0x3c) to optimize the EQ. The default is 0x0a.
* Based on testing and practical application, this register setting above can
* solve the issue for all type of the short cables and the capacitor AC
* coupling mode.
*
* The indirect DSP register (0x3c) is an 8-bit register, the bits describe as
* follows,
*
* Bits Bit Name Description Mode Default Setting
* 0x0a 0x15
* 7-5 Reserved RO 000 000
* 4 Cpu_EQ_Done_Cond1 How to judge EQ is finished,
* there are two ways to judge
* if EQ is finished, can set
* either way R/W 0 1
* 3-1 Cpu_EQ_CP_Points Control of EQ training is
* over-boosted or
* [2:0] under-boosted, that means to
* compensate signal attenuation
* more or less. R/W 101 010
* 0 Cpu_STOP_RUN after EQ training completed,
* stop adaptation R/W 0 1
*
* Explanation:
* The above register change makes equalizers compensation range wider, and
* therefore cables with various characteristics can be tolerated. Adjust
* equalizer EQ training algorithm to cover a few type of short cables issue.
* Also is appropriate for the board to board connection and port to port
* connection with the capacitor AC coupling mode.
*
* Basically, it decides how much signal amplitude to compensate accurately
* to the different type of short cables characteristics. The current default
* value in the indirect register (0x3c) can cover all general standard
* Ethernet short cables like CAT-5, CAT-5e without any problem.
* Based on tests, a more optimized equalizer adjustment value 0x15 is better
* for all corner cases of the short cable and short distance connection for
* port to port or board to board cases.
*/
static int dsa_ksz8794_phy_workaround_0x01(struct ksz8xxx_data *pdev)
{
uint8_t indirect_type = 0x0a;
uint8_t indirect_addr = 0x3c;
uint8_t indirect_data = 0x15;
dsa_ksz8xxx_write_reg(pdev, KSZ8794_REG_IND_CTRL_0, indirect_type);
dsa_ksz8xxx_write_reg(pdev, KSZ8794_REG_IND_CTRL_1, indirect_addr);
dsa_ksz8xxx_write_reg(pdev, KSZ8794_IND_BYTE, indirect_data);
LOG_INF("apply workarkound 0x01 for short connections on KSZ8794");
return 0;
}
/*
* Workaround 0x02 and 0x4
* Solution for Using CAT-5E or CAT-6 Short Cable with a Link Issue for the
* KSZ8795 Family
*
* Title
* Solution for Using CAT-5E or CAT-6 Short Cable with a Link Issue for the
* KSZ8795 Family
* https://microchipsupport.force.com/s/article/Solution-for-Using-CAT-5E-or
* -CAT-6-Short-Cable- with-a-Link-Issue-for-the-KSZ8795-Family
*
* Question
* Possible Problem Description:
* 1) KSZ8795 family includes KSZ8795CLX, KSZ8775CLX, KSZ8765CLX and KSZ8794CNX.
* 2) The KSZ8795 family copper parts may not link well when connected through a
* short CAT-5E or CAT-6 cable (about <=30 meter). The failure rate may be about
* 2-5%.
*
* Answer
* Root Cause:
* Basically, KSZ8795 10/100 Ethernet switch family was designed based on CAT-5
* cable. With the application of more type of cables, specially two types
* cables of CAT-5E and CAT-6, both cables have wider bandwidth that has
* different frequency characteristics than CAT-5 cable. More higher frequency
* component of the CAT-5E or CAT-6 will be amplified in the receiving amplifier
* and will cause the received signal distortion due to too much high frequency
* components receiving signal amplitude and cause the link-up failure with
* short cables.
*
* Solution/Workaround:
* 1) dsa_ksz8794_phy_workaround_0x02()
* Based on the root cause above, adjust the receiver low pass filter to reduce
* the high frequency component to keep the receive signal within a reasonable
* range when using CAT-5E and CAT-6 cable.
*
* Set the indirect register as follows for the receiver low pass filter.
* Format is w [Register address] [8-bit data]
* w 6e a0 //write the indirect register
* w 6f 4c //write/assign the internal used indirect register address (0x4c)
* w a0 40 //write 0x40 to indirect register (0x4c) to reduce low pass filter
* bandwidth.
*
* The register 0x4c bits [7:6] for receiver low pass filter bandwidth control.
*
* The default value is 00, change to 01.
* Based on testing and practical application, this register setting above can
* solve the link issue if using CAT-5E and CAT-6 short cables.
*
* The indirect register (0x4C) is an 8-bit register. The bits [7:6] are
* described in the table below.
*
*
* Bits Bit Name Description Mode Default Setting
* 0x00 0x40
* 7-6 RX BW control Low pass filter bandwidth R/W 00 01
* 00 = 90MHz
* 01 = 62MHz
* 10 = 55MHz
* 11 = 44MHz
* 5 Enable Near-end loopback R/W 0 0
* 4-3 BTRT Additional reduce R/W 00 00
* 2 SD Ext register R/W 0 0
* 1-0 FXD reference setting 1.7V, 2V,
* 1.4V
* R/W 00 00
*
* Solution/Workaround:
* 2) dsa_ksz8794_phy_workaround_0x04()
* For the wider bandwidth cables or on-board capacitor AC coupling
* application, we recommend adding/setting the indirect register (0x08) from
* default 0x0f to 0x00 that means to change register (0x08) bits [5:0] from
* 0x0f to 0x00 to reduce equalizers (EQ) initial value to 0x00 for more
* short cable or on-board capacitors AC coupling application.
*
* Set the indirect register as follows for EQ with 0x00 initial value.
* Format is w [Register address] [8-bit data]
* w 6e a0 //write the indirect register
* w 6f 08 //write/assign the internal used indirect register address (0x08)
* w a0 00 //write 0x00 to indirect register (0x08) to make EQ initial value
* equal to 0x00 for very short cable (For example, 0.1m or less)
* or connect two ports directly through capacitors for a capacitor
* AC couple.
*
* The indirect DSP register (0x08) is an 8-bit register. The bits [5:0] are
* described in the table below.
*
* Bits Bit Name Description Mode Default Setting
* 0x0f 0x00
* 7 Park EQ Enable Park Equalizer function enable R/W 0 0
* 6 Reserved R 0 0
* 5-0 Cpu_EQ_Index Equalizer index control
* interface R/W 001111 000000
* from 0 to 55, set EQ initial value
* Conclusion:
* Due to CAT-5E and CAT-6 cable having wider bandwidth, more high frequency
* components will pass the low pass filter into the receiving amplifier and
* cause the received signal amplitude to be too high.
* Reducing the receiver low pass filter bandwidth will be the best way to
* reduce the high frequency components to meet CAT-5E and CAT-6 short cable
* link issue and doesnt affect CAT-5 cable because CAT-5 is not a wider
* bandwidth cable.
*
* The DSP register (0X08) bits [5:0] are for EQ initial value. Its current
* default value is 0x0F, which assumes the need to equalize regardless of the
* cable length. This 0x0f initial equalize value in EQ isnt needed when
* using very short cable or an on-board direct connection like capacitors AC
* coupling mode. As the cable length increases, the device will equalize
* automatic accordingly from 0x00 EQ initial value.
*
* So, it is better to set both register (0x4c) to 0x40 and register (0x08) to
* 0x00 for compatibility with all Ethernet cable types and Ethernet cable
* lengths.
*/
static int dsa_ksz8794_phy_workaround_0x02(struct ksz8xxx_data *pdev)
{
uint8_t indirect_type = 0x0a;
uint8_t indirect_addr = 0x4c;
uint8_t indirect_data = 0x40;
dsa_ksz8xxx_write_reg(pdev, KSZ8794_REG_IND_CTRL_0, indirect_type);
dsa_ksz8xxx_write_reg(pdev, KSZ8794_REG_IND_CTRL_1, indirect_addr);
dsa_ksz8xxx_write_reg(pdev, KSZ8794_IND_BYTE, indirect_data);
LOG_INF("apply workarkound 0x02 link issue CAT-5E/6 on KSZ8794");
return 0;
}
static int dsa_ksz8794_phy_workaround_0x04(struct ksz8xxx_data *pdev)
{
uint8_t indirect_type = 0x0a;
uint8_t indirect_addr = 0x08;
uint8_t indirect_data = 0x00;
dsa_ksz8xxx_write_reg(pdev, KSZ8794_REG_IND_CTRL_0, indirect_type);
dsa_ksz8xxx_write_reg(pdev, KSZ8794_REG_IND_CTRL_1, indirect_addr);
dsa_ksz8xxx_write_reg(pdev, KSZ8794_IND_BYTE, indirect_data);
LOG_INF("apply workarkound 0x04 link issue CAT-5E/6 on KSZ8794");
return 0;
}
static int dsa_ksz8794_apply_workarounds(struct ksz8xxx_data *pdev)
{
int workaround = DT_INST_PROP(0, workaround);
if (workaround & 0x01) {
dsa_ksz8794_phy_workaround_0x01(pdev);
}
if (workaround & 0x02) {
dsa_ksz8794_phy_workaround_0x02(pdev);
}
if (workaround & 0x04) {
dsa_ksz8794_phy_workaround_0x04(pdev);
}
return 0;
}
#endif
#if DT_INST_NODE_HAS_PROP(0, mii_lowspeed_drivestrength)
static int dsa_ksz8794_set_lowspeed_drivestrength(struct ksz8xxx_data *pdev)
{
int mii_lowspeed_drivestrength =
DT_INST_PROP(0, mii_lowspeed_drivestrength);
uint8_t tmp, val;
int ret = 0;
switch (mii_lowspeed_drivestrength) {
case 2:
val = KSZ8794_GLOBAL_CTRL20_LOWSPEED_2MA;
break;
case 4:
val = KSZ8794_GLOBAL_CTRL20_LOWSPEED_4MA;
break;
case 8:
val = KSZ8794_GLOBAL_CTRL20_LOWSPEED_8MA;
break;
case 12:
val = KSZ8794_GLOBAL_CTRL20_LOWSPEED_12MA;
break;
case 16:
val = KSZ8794_GLOBAL_CTRL20_LOWSPEED_16MA;
break;
case 20:
val = KSZ8794_GLOBAL_CTRL20_LOWSPEED_20MA;
break;
case 24:
val = KSZ8794_GLOBAL_CTRL20_LOWSPEED_24MA;
break;
case 28:
val = KSZ8794_GLOBAL_CTRL20_LOWSPEED_28MA;
break;
default:
ret = -1;
LOG_ERR("KSZ8794: unsupported drive strength %dmA",
mii_lowspeed_drivestrength);
break;
}
if (ret == 0) {
/* set Low-Speed Interface Drive Strength for MII and RMMI */
dsa_ksz8xxx_read_reg(pdev, KSZ8794_GLOBAL_CTRL20, &tmp);
tmp &= ~KSZ8794_GLOBAL_CTRL20_LOWSPEED_MASK;
tmp |= val;
dsa_ksz8xxx_write_reg(pdev, KSZ8794_GLOBAL_CTRL20, tmp);
dsa_ksz8xxx_read_reg(pdev, KSZ8794_GLOBAL_CTRL20, &tmp);
LOG_INF("KSZ8794: set drive strength %dmA",
mii_lowspeed_drivestrength);
}
return ret;
}
#endif
#endif
#if DT_INST_NODE_HAS_PROP(0, reset_gpios)
static int dsa_ksz8xxx_gpio_reset(void)
{
struct gpio_dt_spec reset_gpio = GPIO_DT_SPEC_INST_GET(0, reset_gpios);
if (!gpio_is_ready_dt(&reset_gpio)) {
LOG_ERR("Reset GPIO device not ready");
return -ENODEV;
}
gpio_pin_configure_dt(&reset_gpio, GPIO_OUTPUT_ACTIVE);
k_msleep(10);
gpio_pin_set_dt(&reset_gpio, 0);
return 0;
}
#endif
/* Low level initialization code for DSA PHY */
int dsa_hw_init(struct ksz8xxx_data *pdev)
{
int rc;
if (pdev->is_init) {
return 0;
}
/* Hard reset */
#if DT_INST_NODE_HAS_PROP(0, reset_gpios)
dsa_ksz8xxx_gpio_reset();
/* Time needed for chip to completely power up (100ms) */
k_busy_wait(KSZ8XXX_HARD_RESET_WAIT);
#endif
#if defined(CONFIG_DSA_SPI)
if (!spi_is_ready_dt(&pdev->spi)) {
LOG_ERR("SPI bus %s is not ready",
pdev->spi.bus->name);
return -ENODEV;
}
#endif
/* Probe attached PHY */
rc = dsa_ksz8xxx_probe(pdev);
if (rc < 0) {
return rc;
}
#if !DT_INST_NODE_HAS_PROP(0, reset_gpios)
/* Soft reset */
dsa_ksz8xxx_soft_reset(pdev);
#endif
/* Setup KSZ8794 */
dsa_ksz8xxx_switch_setup(pdev);
#if DT_INST_NODE_HAS_PROP(0, mii_lowspeed_drivestrength)
dsa_ksz8794_set_lowspeed_drivestrength(pdev);
#endif
#if DT_INST_NODE_HAS_PROP(0, workaround)
/* apply workarounds */
dsa_ksz8794_apply_workarounds(pdev);
#endif
pdev->is_init = true;
return 0;
}
static void dsa_delayed_work(struct k_work *item)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(item);
struct dsa_context *context =
CONTAINER_OF(dwork, struct dsa_context, dsa_work);
struct ksz8xxx_data *pdev = PRV_DATA(context);
bool link_state;
uint8_t i;
for (i = KSZ8XXX_FIRST_PORT; i <= KSZ8XXX_LAST_PORT; i++) {
/* Skip Switch <-> CPU Port */
if (i == KSZ8XXX_CPU_PORT) {
continue;
}
link_state = dsa_ksz8xxx_port_link_status(pdev, i);
if (link_state && !context->link_up[i]) {
LOG_INF("DSA port: %d link UP!", i);
net_eth_carrier_on(context->iface_slave[i]);
} else if (!link_state && context->link_up[i]) {
LOG_INF("DSA port: %d link DOWN!", i);
net_eth_carrier_off(context->iface_slave[i]);
}
context->link_up[i] = link_state;
}
k_work_reschedule(&context->dsa_work, DSA_STATUS_PERIOD_MS);
}
int dsa_port_init(const struct device *dev)
{
struct dsa_context *data = dev->data;
struct ksz8xxx_data *pdev = PRV_DATA(data);
dsa_hw_init(pdev);
return 0;
}
/* Generic implementation of writing value to DSA register */
static int dsa_ksz8xxx_sw_write_reg(const struct device *dev, uint16_t reg_addr,
uint8_t value)
{
struct dsa_context *data = dev->data;
struct ksz8xxx_data *pdev = PRV_DATA(data);
dsa_ksz8xxx_write_reg(pdev, reg_addr, value);
return 0;
}
/* Generic implementation of reading value from DSA register */
static int dsa_ksz8xxx_sw_read_reg(const struct device *dev, uint16_t reg_addr,
uint8_t *value)
{
struct dsa_context *data = dev->data;
struct ksz8xxx_data *pdev = PRV_DATA(data);
dsa_ksz8xxx_read_reg(pdev, reg_addr, value);
return 0;
}
/**
* @brief Set entry to DSA MAC address table
*
* @param dev DSA device
* @param mac The MAC address to be set in the table
* @param fw_port Port number to forward packets
* @param tbl_entry_idx The index of entry in the table
* @param flags Flags to be set in the entry
*
* @return 0 if ok, < 0 if error
*/
static int dsa_ksz8xxx_set_mac_table_entry(const struct device *dev,
const uint8_t *mac,
uint8_t fw_port,
uint16_t tbl_entry_idx,
uint16_t flags)
{
struct dsa_context *data = dev->data;
struct ksz8xxx_data *pdev = PRV_DATA(data);
if (flags != 0) {
return -EINVAL;
}
dsa_ksz8xxx_set_static_mac_table(pdev, mac, fw_port,
tbl_entry_idx);
return 0;
}
/**
* @brief Get DSA MAC address table entry
*
* @param dev DSA device
* @param buf The buffer for data read from the table
* @param tbl_entry_idx The index of entry in the table
*
* @return 0 if ok, < 0 if error
*/
static int dsa_ksz8xxx_get_mac_table_entry(const struct device *dev,
uint8_t *buf,
uint16_t tbl_entry_idx)
{
struct dsa_context *data = dev->data;
struct ksz8xxx_data *pdev = PRV_DATA(data);
dsa_ksz8xxx_read_static_mac_table(pdev, tbl_entry_idx, buf);
return 0;
}
#if defined(CONFIG_DSA_KSZ_TAIL_TAGGING)
#define DSA_KSZ8795_TAIL_TAG_OVRD BIT(6)
#define DSA_KSZ8795_TAIL_TAG_LOOKUP BIT(7)
#define DSA_KSZ8794_EGRESS_TAG_LEN 1
#define DSA_KSZ8794_INGRESS_TAG_LEN 1
#define DSA_MIN_L2_FRAME_SIZE 64
#define DSA_L2_FCS_SIZE 4
struct net_pkt *dsa_ksz8xxx_xmit_pkt(struct net_if *iface, struct net_pkt *pkt)
{
struct ethernet_context *ctx = net_if_l2_data(iface);
struct net_eth_hdr *hdr = NET_ETH_HDR(pkt);
struct net_linkaddr lladst;
uint8_t port_idx, *dbuf;
struct net_buf *buf;
size_t len, pad = 0;
lladst.len = sizeof(hdr->dst.addr);
lladst.addr = &hdr->dst.addr[0];
len = net_pkt_get_len(pkt);
/*
* For KSZ8794 one needs to 'pad' the L2 frame to its minimal size
* (64B) before appending TAIL TAG and FCS
*/
if (len < (DSA_MIN_L2_FRAME_SIZE - DSA_L2_FCS_SIZE)) {
/* Calculate number of bytes needed for padding */
pad = DSA_MIN_L2_FRAME_SIZE - DSA_L2_FCS_SIZE - len;
}
buf = net_buf_alloc_len(net_buf_pool_get(pkt->buffer->pool_id),
pad + DSA_KSZ8794_INGRESS_TAG_LEN, K_NO_WAIT);
if (!buf) {
LOG_ERR("DSA cannot allocate new data buffer");
return NULL;
}
/*
* Get the pointer to struct's net_buf_simple data and zero out the
* padding and tag byte placeholder
*/
dbuf = net_buf_simple_tail(&(buf->b));
memset(dbuf, 0x0, pad + DSA_KSZ8794_INGRESS_TAG_LEN);
/*
* For master port (eth0) set the bit 7 to use look-up table to pass
* packet to correct interface (bits [0..6] _are_ ignored).
*
* For slave ports (lan1..3) just set the tag properly:
* bit 0 -> eth1, bit 1 -> eth2. bit 2 -> eth3
* It may be also necessary to set bit 6 to "anyhow send packets to
* specified port in Bits[3:0]". This may be needed for RSTP
* implementation (when the switch port is disabled, but shall handle
* LLDP packets).
*/
if (dsa_is_port_master(iface)) {
port_idx = DSA_KSZ8795_TAIL_TAG_LOOKUP;
} else {
port_idx = (1 << (ctx->dsa_port_idx));
}
NET_DBG("TT - port: 0x%x[%p] LEN: %d 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x",
port_idx, iface, len, lladst.addr[0], lladst.addr[1],
lladst.addr[2], lladst.addr[3], lladst.addr[4], lladst.addr[5]);
/* The tail tag shall be placed after the padding (if present) */
dbuf[pad] = port_idx;
/* Set proper len member for the actual struct net_buf_simple */
net_buf_add(buf, pad + DSA_KSZ8794_INGRESS_TAG_LEN);
/* Append struct net_buf to packet data */
net_buf_frag_add(pkt->buffer, buf);
return pkt;
}
/**
* @brief DSA function to get proper interface
*
* This is the function for assigning proper slave interface after receiving
* the packet on master.
*
* @param iface Network interface
* @param pkt Network packet
*
* Returns:
* - Pointer to struct net_if
*/
static struct net_if *dsa_ksz8xxx_get_iface(struct net_if *iface,
struct net_pkt *pkt)
{
struct ethernet_context *ctx;
struct net_if *iface_sw;
size_t plen;
uint8_t pnum;
if (!(net_eth_get_hw_capabilities(iface) &
(ETHERNET_DSA_SLAVE_PORT | ETHERNET_DSA_MASTER_PORT))) {
return iface;
}
net_pkt_set_overwrite(pkt, true);
net_pkt_cursor_init(pkt);
plen = net_pkt_get_len(pkt);
net_pkt_skip(pkt, plen - DSA_KSZ8794_EGRESS_TAG_LEN);
net_pkt_read_u8(pkt, &pnum);
net_pkt_update_length(pkt, plen - DSA_KSZ8794_EGRESS_TAG_LEN);
/*
* NOTE:
* The below approach is only for ip_k66f board as we do know
* that eth0 is on position (index) 1, then we do have lan1 with
* index 2, lan2 with 3 and lan3 with 4.
*
* This is caused by eth interfaces placing order by linker and
* may vary on other boards, where are for example two eth
* interfaces available.
*/
iface_sw = net_if_get_by_index(pnum + 2);
ctx = net_if_l2_data(iface);
NET_DBG("TT - plen: %d pnum: %d pos: 0x%p dsa_port_idx: %d",
plen - DSA_KSZ8794_EGRESS_TAG_LEN, pnum,
net_pkt_cursor_get_pos(pkt), ctx->dsa_port_idx);
return iface_sw;
}
#endif
static void dsa_iface_init(struct net_if *iface)
{
struct dsa_slave_config *cfg = (struct dsa_slave_config *)
net_if_get_device(iface)->config;
struct ethernet_context *ctx = net_if_l2_data(iface);
const struct device *dm, *dev = net_if_get_device(iface);
struct dsa_context *context = dev->data;
struct ksz8xxx_data *pdev = PRV_DATA(context);
struct ethernet_context *ctx_master;
int i = pdev->iface_init_count;
/* Find master port for ksz8794 switch */
if (context->iface_master == NULL) {
dm = DEVICE_DT_GET(DT_INST_PHANDLE(0, dsa_master_port));
context->iface_master = net_if_lookup_by_dev(dm);
if (context->iface_master == NULL) {
LOG_ERR("DSA: Master iface NOT found!");
return;
}
/*
* Provide pointer to DSA context to master's eth interface
* struct ethernet_context
*/
ctx_master = net_if_l2_data(context->iface_master);
ctx_master->dsa_ctx = context;
}
if (context->iface_slave[i] == NULL) {
context->iface_slave[i] = iface;
net_if_set_link_addr(iface, cfg->mac_addr,
sizeof(cfg->mac_addr),
NET_LINK_ETHERNET);
ctx->dsa_port_idx = i;
ctx->dsa_ctx = context;
/*
* Initialize ethernet context 'work' for this iface to
* be able to monitor the carrier status.
*/
ethernet_init(iface);
}
pdev->iface_init_count++;
net_if_carrier_off(iface);
/*
* Start DSA work to monitor status of ports (read from switch IC)
* only when carrier_work is properly initialized for all slave
* interfaces.
*/
if (pdev->iface_init_count == context->num_slave_ports) {
k_work_init_delayable(&context->dsa_work, dsa_delayed_work);
k_work_reschedule(&context->dsa_work, DSA_STATUS_PERIOD_MS);
}
}
static enum ethernet_hw_caps dsa_port_get_capabilities(const struct device *dev)
{
ARG_UNUSED(dev);
return ETHERNET_DSA_SLAVE_PORT | ETHERNET_LINK_10BASE_T |
ETHERNET_LINK_100BASE_T;
}
const struct ethernet_api dsa_eth_api_funcs = {
.iface_api.init = dsa_iface_init,
.get_capabilities = dsa_port_get_capabilities,
.send = dsa_tx,
};
static struct dsa_api dsa_api_f = {
.switch_read = dsa_ksz8xxx_sw_read_reg,
.switch_write = dsa_ksz8xxx_sw_write_reg,
.switch_set_mac_table_entry = dsa_ksz8xxx_set_mac_table_entry,
.switch_get_mac_table_entry = dsa_ksz8xxx_get_mac_table_entry,
#if defined(CONFIG_DSA_KSZ_TAIL_TAGGING)
.dsa_xmit_pkt = dsa_ksz8xxx_xmit_pkt,
.dsa_get_iface = dsa_ksz8xxx_get_iface,
#endif
};
/*
* The order of NET_DEVICE_INIT_INSTANCE() placement IS important.
*
* To make the code simpler - the special care needs to be put on
* the proper placement of eth0, lan1, lan2, lan3, etc - to avoid
* the need to search for proper interface when each packet is
* received or sent.
* The net_if.c has a very fast API to provide access to linked by
* the linker struct net_if(s) via device or index. As it is already
* available for use - let's use it.
*
* To do that one needs to check how linker places the interfaces.
* To inspect:
* objdump -dst ./zephyr/CMakeFiles/zephyr.dir/drivers/ethernet/eth_mcux.c.obj\
* | grep "__net_if"
* (The real problem is with eth0 and lanX order)
*
* If this approach is not enough for a simple system (like e.g. ip_k66f, one
* can prepare dedicated linker script for the board to force the
* order for complicated designs (like ones with eth0, eth1, and lanX).
*
* For simple cases it is just good enough.
*/
#define NET_SLAVE_DEVICE_INIT_INSTANCE(slave, n) \
const struct dsa_slave_config dsa_0_slave_##slave##_config = { \
.mac_addr = DT_PROP_OR(slave, local_mac_address, {0}) \
}; \
NET_DEVICE_DT_DEFINE_INSTANCE(slave, \
n, \
dsa_port_init, \
NULL, \
&dsa_context_##n, \
&dsa_0_slave_##slave##_config, \
CONFIG_ETH_INIT_PRIORITY, \
&dsa_eth_api_funcs, \
ETHERNET_L2, \
NET_L2_GET_CTX_TYPE(ETHERNET_L2), \
NET_ETH_MTU);
#define NET_SLAVE_DEVICE_0_INIT_INSTANCE(slave) \
NET_SLAVE_DEVICE_INIT_INSTANCE(slave, 0)
#define NET_SLAVE_DEVICE_1_INIT_INSTANCE(slave) \
NET_SLAVE_DEVICE_INIT_INSTANCE(slave, 1)
#define NET_SLAVE_DEVICE_2_INIT_INSTANCE(slave) \
NET_SLAVE_DEVICE_INIT_INSTANCE(slave, 2)
#define NET_SLAVE_DEVICE_3_INIT_INSTANCE(slave) \
NET_SLAVE_DEVICE_INIT_INSTANCE(slave, 3)
#define NET_SLAVE_DEVICE_4_INIT_INSTANCE(slave) \
NET_SLAVE_DEVICE_INIT_INSTANCE(slave, 4)
#if defined(CONFIG_DSA_SPI)
#define DSA_SPI_BUS_CONFIGURATION(n) \
.spi = SPI_DT_SPEC_INST_GET(n, \
SPI_WORD_SET(8), \
0U)
#else
#define DSA_SPI_BUS_CONFIGURATION(n)
#endif
#define DSA_DEVICE(n) \
static struct ksz8xxx_data dsa_device_prv_data_##n = { \
.iface_init_count = 0, \
.is_init = false, \
DSA_SPI_BUS_CONFIGURATION(n), \
}; \
static struct dsa_context dsa_context_##n = { \
.num_slave_ports = DT_INST_PROP(0, dsa_slave_ports), \
.dapi = &dsa_api_f, \
.prv_data = (void *)&dsa_device_prv_data_##n, \
}; \
DT_INST_FOREACH_CHILD_VARGS(n, NET_SLAVE_DEVICE_INIT_INSTANCE, n);
DT_INST_FOREACH_STATUS_OKAY(DSA_DEVICE);