zephyr/arch/arc/core/fault.c

435 lines
10 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Common fault handler for ARCv2
*
* Common fault handler for ARCv2 processors.
*/
#include <toolchain.h>
#include <linker/sections.h>
#include <inttypes.h>
#include <kernel.h>
kernel/arch: consolidate tTCS and TNANO definitions There was a lot of duplication between architectures for the definition of threads and the "nanokernel" guts. These have been consolidated. Now, a common file kernel/unified/include/kernel_structs.h holds the common definitions. Architectures provide two files to complement it: kernel_arch_data.h and kernel_arch_func.h. The first one contains at least the struct _thread_arch and struct _kernel_arch data structures, as well as the struct _callee_saved and struct _caller_saved register layouts. The second file contains anything that needs what is provided by the common stuff in kernel_structs.h. Those two files are only meant to be included in kernel_structs.h in very specific locations. The thread data structure has been separated into three major parts: common struct _thread_base and struct k_thread, and arch-specific struct _thread_arch. The first and third ones are included in the second. The struct s_NANO data structure has been split into two: common struct _kernel and arch-specific struct _kernel_arch. The latter is included in the former. Offsets files have also changed: nano_offsets.h has been renamed kernel_offsets.h and is still included by the arch-specific offsets.c. Also, since the thread and kernel data structures are now made of sub-structures, offsets have to be added to make up the full offset. Some of these additions have been consolidated in shorter symbols, available from kernel/unified/include/offsets_short.h, which includes an arch-specific offsets_arch_short.h. Most of the code include offsets_short.h now instead of offsets.h. Change-Id: I084645cb7e6db8db69aeaaf162963fe157045d5a Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-11-08 16:36:50 +01:00
#include <kernel_structs.h>
#include <sys/printk.h>
#include <exc_handle.h>
#include <logging/log_ctrl.h>
u32_t arc_exc_saved_sp;
#ifdef CONFIG_USERSPACE
Z_EXC_DECLARE(z_arch_user_string_nlen);
static const struct z_exc_handle exceptions[] = {
Z_EXC_HANDLE(z_arch_user_string_nlen)
};
#endif
#if defined(CONFIG_MPU_STACK_GUARD)
#define IS_MPU_GUARD_VIOLATION(guard_start, fault_addr, stack_ptr) \
((fault_addr >= guard_start) && \
(fault_addr < (guard_start + STACK_GUARD_SIZE)) && \
(stack_ptr <= (guard_start + STACK_GUARD_SIZE)))
/**
* @brief Assess occurrence of current thread's stack corruption
*
* This function performs an assessment whether a memory fault (on a
* given memory address) is the result of stack memory corruption of
* the current thread.
*
* Thread stack corruption for supervisor threads or user threads in
* privilege mode (when User Space is supported) is reported upon an
* attempt to access the stack guard area (if MPU Stack Guard feature
* is supported). Additionally the current thread stack pointer
* must be pointing inside or below the guard area.
*
* Thread stack corruption for user threads in user mode is reported,
* if the current stack pointer is pointing below the start of the current
* thread's stack.
*
* Notes:
* - we assume a fully descending stack,
* - we assume a stacking error has occurred,
* - the function shall be called when handling MPU privilege violation
*
* If stack corruption is detected, the function returns the lowest
* allowed address where the Stack Pointer can safely point to, to
* prevent from errors when un-stacking the corrupted stack frame
* upon exception return.
*
* @param fault_addr memory address on which memory access violation
* has been reported.
* @param sp stack pointer when exception comes out
*
* @return The lowest allowed stack frame pointer, if error is a
* thread stack corruption, otherwise return 0.
*/
static u32_t z_check_thread_stack_fail(const u32_t fault_addr, u32_t sp)
{
const struct k_thread *thread = _current;
if (!thread) {
return 0;
}
#if defined(CONFIG_USERSPACE)
if (thread->arch.priv_stack_start) {
/* User thread */
if (z_arc_v2_aux_reg_read(_ARC_V2_ERSTATUS)
& _ARC_V2_STATUS32_U) {
/* Thread's user stack corruption */
#ifdef CONFIG_ARC_HAS_SECURE
sp = z_arc_v2_aux_reg_read(_ARC_V2_SEC_U_SP);
#else
sp = z_arc_v2_aux_reg_read(_ARC_V2_USER_SP);
#endif
if (sp <= (u32_t)thread->stack_obj) {
return (u32_t)thread->stack_obj;
}
} else {
/* User thread in privilege mode */
if (IS_MPU_GUARD_VIOLATION(
thread->arch.priv_stack_start - STACK_GUARD_SIZE,
fault_addr, sp)) {
/* Thread's privilege stack corruption */
return thread->arch.priv_stack_start;
}
}
} else {
/* Supervisor thread */
if (IS_MPU_GUARD_VIOLATION((u32_t)thread->stack_obj,
fault_addr, sp)) {
/* Supervisor thread stack corruption */
return (u32_t)thread->stack_obj + STACK_GUARD_SIZE;
}
}
#else /* CONFIG_USERSPACE */
if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start,
fault_addr, sp)) {
/* Thread stack corruption */
return thread->stack_info.start + STACK_GUARD_SIZE;
}
#endif /* CONFIG_USERSPACE */
return 0;
}
#endif
#ifdef CONFIG_ARC_EXCEPTION_DEBUG
/* For EV_ProtV, the numbering/semantics of the parameter are consistent across
* several codes, although not all combination will be reported.
*
* These codes and parameters do not have associated* names in
* the technical manual, just switch on the values in Table 6-5
*/
static void dump_protv_access_err(u32_t parameter)
{
switch (parameter) {
case 0x1:
printk("code protection scheme");
break;
case 0x2:
printk("stack checking scheme");
break;
case 0x4:
printk("MPU");
break;
case 0x8:
printk("MMU");
break;
case 0x10:
printk("NVM");
break;
case 0x24:
printk("Secure MPU");
break;
case 0x44:
printk("Secure MPU with SID mismatch");
break;
default:
printk("unknown");
break;
}
}
static void dump_protv_exception(u32_t cause, u32_t parameter)
{
switch (cause) {
case 0x0:
printk("Instruction fetch violation: ");
dump_protv_access_err(parameter);
break;
case 0x1:
printk("Memory read protection violation: ");
dump_protv_access_err(parameter);
break;
case 0x2:
printk("Memory write protection violation: ");
dump_protv_access_err(parameter);
break;
case 0x3:
printk("Memory read-modify-write violation: ");
dump_protv_access_err(parameter);
break;
case 0x10:
printk("Normal vector table in secure memory");
break;
case 0x11:
printk("NS handler code located in S memory");
break;
case 0x12:
printk("NSC Table Range Violation");
break;
default:
printk("unknown");
break;
}
}
static void dump_machine_check_exception(u32_t cause, u32_t parameter)
{
switch (cause) {
case 0x0:
printk("double fault");
break;
case 0x1:
printk("overlapping TLB entries");
break;
case 0x2:
printk("fatal TLB error");
break;
case 0x3:
printk("fatal cache error");
break;
case 0x4:
printk("internal memory error on instruction fetch");
break;
case 0x5:
printk("internal memory error on data fetch");
break;
case 0x6:
printk("illegal overlapping MPU entries");
if (parameter == 0x1) {
printk(" (jump and branch target)");
}
break;
case 0x10:
printk("secure vector table not located in secure memory");
break;
case 0x11:
printk("NSC jump table not located in secure memory");
break;
case 0x12:
printk("secure handler code not located in secure memory");
break;
case 0x13:
printk("NSC target address not located in secure memory");
break;
case 0x80:
printk("uncorrectable ECC or parity error in vector memory");
break;
default:
printk("unknown");
break;
}
}
static void dump_privilege_exception(u32_t cause, u32_t parameter)
{
switch (cause) {
case 0x0:
printk("Privilege violation");
break;
case 0x1:
printk("disabled extension");
break;
case 0x2:
printk("action point hit");
break;
case 0x10:
switch (parameter) {
case 0x1:
printk("N to S return using incorrect return mechanism");
break;
case 0x2:
printk("N to S return with incorrect operating mode");
break;
case 0x3:
printk("IRQ/exception return fetch from wrong mode");
break;
case 0x4:
printk("attempt to halt secure processor in NS mode");
break;
case 0x20:
printk("attempt to access secure resource from normal mode");
break;
case 0x40:
printk("SID violation on resource access (APEX/UAUX/key NVM)");
break;
default:
printk("unknown");
break;
}
break;
case 0x13:
switch (parameter) {
case 0x20:
printk("attempt to access secure APEX feature from NS mode");
break;
case 0x40:
printk("SID violation on access to APEX feature");
break;
default:
printk("unknown");
break;
}
break;
default:
printk("unknown");
break;
}
}
static void dump_exception_info(u32_t vector, u32_t cause, u32_t parameter)
{
if (vector >= 0x10 && vector <= 0xFF) {
printk("interrupt %u\n", vector);
return;
}
/* Names are exactly as they appear in Designware ARCv2 ISA
* Programmer's reference manual for easy searching
*/
switch (vector) {
case ARC_EV_RESET:
printk("Reset");
break;
case ARC_EV_MEM_ERROR:
printk("Memory Error");
break;
case ARC_EV_INS_ERROR:
printk("Instruction Error");
break;
case ARC_EV_MACHINE_CHECK:
printk("EV_MachineCheck: ");
dump_machine_check_exception(cause, parameter);
break;
case ARC_EV_TLB_MISS_I:
printk("EV_TLBMissI");
break;
case ARC_EV_TLB_MISS_D:
printk("EV_TLBMissD");
break;
case ARC_EV_PROT_V:
printk("EV_ProtV: ");
dump_protv_exception(cause, parameter);
break;
case ARC_EV_PRIVILEGE_V:
printk("EV_PrivilegeV: ");
dump_privilege_exception(cause, parameter);
break;
case ARC_EV_SWI:
printk("EV_SWI");
break;
case ARC_EV_TRAP:
printk("EV_Trap");
break;
case ARC_EV_EXTENSION:
printk("EV_Extension");
break;
case ARC_EV_DIV_ZERO:
printk("EV_DivZero");
break;
case ARC_EV_DC_ERROR:
printk("EV_DCError");
break;
case ARC_EV_MISALIGNED:
printk("EV_Misaligned");
break;
case ARC_EV_VEC_UNIT:
printk("EV_VecUnit");
break;
default:
printk("unknown");
break;
}
printk("\n");
}
#endif /* CONFIG_ARC_EXCEPTION_DEBUG */
/*
* @brief Fault handler
*
* This routine is called when fatal error conditions are detected by hardware
* and is responsible only for reporting the error. Once reported, it then
* invokes the user provided routine k_sys_fatal_error_handler() which is
* responsible for implementing the error handling policy.
*/
void _Fault(NANO_ESF *esf)
{
u32_t vector, cause, parameter;
u32_t exc_addr = z_arc_v2_aux_reg_read(_ARC_V2_EFA);
u32_t ecr = z_arc_v2_aux_reg_read(_ARC_V2_ECR);
#ifdef CONFIG_USERSPACE
for (int i = 0; i < ARRAY_SIZE(exceptions); i++) {
u32_t start = (u32_t)exceptions[i].start;
u32_t end = (u32_t)exceptions[i].end;
if (esf->pc >= start && esf->pc < end) {
esf->pc = (u32_t)(exceptions[i].fixup);
return;
}
}
#endif
vector = Z_ARC_V2_ECR_VECTOR(ecr);
cause = Z_ARC_V2_ECR_CODE(ecr);
parameter = Z_ARC_V2_ECR_PARAMETER(ecr);
/* exception raised by kernel */
if (vector == ARC_EV_TRAP && parameter == _TRAP_S_CALL_RUNTIME_EXCEPT) {
z_arc_fatal_error(esf->r0, esf);
return;
}
printk("***** Exception vector: 0x%x, cause code: 0x%x, parameter 0x%x\n",
vector, cause, parameter);
printk("Address 0x%x\n", exc_addr);
#ifdef CONFIG_ARC_EXCEPTION_DEBUG
dump_exception_info(vector, cause, parameter);
#endif
#ifdef CONFIG_ARC_STACK_CHECKING
/* Vector 6 = EV_ProV. Regardless of cause, parameter 2 means stack
* check violation
* stack check and mpu violation can come out together, then
* parameter = 0x2 | [0x4 | 0x8 | 0x1]
*/
if (vector == ARC_EV_PROT_V && parameter & 0x2) {
z_arc_fatal_error(K_ERR_STACK_CHK_FAIL, esf);
return;
}
#endif
#ifdef CONFIG_MPU_STACK_GUARD
if (vector == ARC_EV_PROT_V && ((parameter == 0x4) ||
(parameter == 0x24))) {
if (z_check_thread_stack_fail(exc_addr, arc_exc_saved_sp)) {
z_arc_fatal_error(K_ERR_STACK_CHK_FAIL, esf);
return;
}
}
#endif
z_arc_fatal_error(K_ERR_CPU_EXCEPTION, esf);
}