zephyr/drivers/serial/uart_cc13xx_cc26xx.c

658 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (c) 2019 Brett Witherspoon
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ti_cc13xx_cc26xx_uart
#include <device.h>
#include <errno.h>
#include <sys/__assert.h>
#include <power/power.h>
#include <drivers/uart.h>
#include <driverlib/ioc.h>
#include <driverlib/prcm.h>
#include <driverlib/uart.h>
#include <ti/drivers/Power.h>
#include <ti/drivers/power/PowerCC26X2.h>
#define GET_PIN(n, pin_name) \
DT_INST_PROP_BY_IDX(n, pin_name, 0)
#define GET_PORT(n, pin_name) \
DT_INST_PROP_BY_IDX(n, pin_name, 1)
struct uart_cc13xx_cc26xx_data {
struct uart_config uart_config;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *user_data;
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_SYS_POWER_MANAGEMENT
Power_NotifyObj postNotify;
bool tx_constrained;
bool rx_constrained;
#endif
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
uint32_t pm_state;
#endif
};
static inline struct uart_cc13xx_cc26xx_data *get_dev_data(const struct device *dev)
{
return dev->data;
}
static inline const struct uart_device_config *get_dev_conf(const struct device *dev)
{
return dev->config;
}
static int uart_cc13xx_cc26xx_poll_in(const struct device *dev,
unsigned char *c)
{
if (!UARTCharsAvail(get_dev_conf(dev)->regs)) {
return -1;
}
*c = UARTCharGetNonBlocking(get_dev_conf(dev)->regs);
return 0;
}
static void uart_cc13xx_cc26xx_poll_out(const struct device *dev,
unsigned char c)
{
UARTCharPut(get_dev_conf(dev)->regs, c);
/*
* Need to wait for character to be transmitted to ensure cpu does not
* enter standby when uart is busy
*/
while (UARTBusy(get_dev_conf(dev)->regs) == true) {
}
}
static int uart_cc13xx_cc26xx_err_check(const struct device *dev)
{
uint32_t flags = UARTRxErrorGet(get_dev_conf(dev)->regs);
int error = (flags & UART_RXERROR_FRAMING ? UART_ERROR_FRAMING : 0) |
(flags & UART_RXERROR_PARITY ? UART_ERROR_PARITY : 0) |
(flags & UART_RXERROR_BREAK ? UART_BREAK : 0) |
(flags & UART_RXERROR_OVERRUN ? UART_ERROR_OVERRUN : 0);
UARTRxErrorClear(get_dev_conf(dev)->regs);
return error;
}
static int uart_cc13xx_cc26xx_configure(const struct device *dev,
const struct uart_config *cfg)
{
uint32_t line_ctrl = 0;
bool flow_ctrl;
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
line_ctrl |= UART_CONFIG_PAR_NONE;
break;
case UART_CFG_PARITY_ODD:
line_ctrl |= UART_CONFIG_PAR_ODD;
break;
case UART_CFG_PARITY_EVEN:
line_ctrl |= UART_CONFIG_PAR_EVEN;
break;
case UART_CFG_PARITY_MARK:
line_ctrl |= UART_CONFIG_PAR_ONE;
break;
case UART_CFG_PARITY_SPACE:
line_ctrl |= UART_CONFIG_PAR_ZERO;
break;
default:
return -EINVAL;
}
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
line_ctrl |= UART_CONFIG_STOP_ONE;
break;
case UART_CFG_STOP_BITS_2:
line_ctrl |= UART_CONFIG_STOP_TWO;
break;
case UART_CFG_STOP_BITS_0_5:
case UART_CFG_STOP_BITS_1_5:
return -ENOTSUP;
default:
return -EINVAL;
}
switch (cfg->data_bits) {
case UART_CFG_DATA_BITS_5:
line_ctrl |= UART_CONFIG_WLEN_5;
break;
case UART_CFG_DATA_BITS_6:
line_ctrl |= UART_CONFIG_WLEN_6;
break;
case UART_CFG_DATA_BITS_7:
line_ctrl |= UART_CONFIG_WLEN_7;
break;
case UART_CFG_DATA_BITS_8:
line_ctrl |= UART_CONFIG_WLEN_8;
break;
default:
return -EINVAL;
}
switch (cfg->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
flow_ctrl = false;
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
flow_ctrl = true;
break;
case UART_CFG_FLOW_CTRL_DTR_DSR:
return -ENOTSUP;
default:
return -EINVAL;
}
/* Disables UART before setting control registers */
UARTConfigSetExpClk(get_dev_conf(dev)->regs,
get_dev_conf(dev)->sys_clk_freq, cfg->baudrate,
line_ctrl);
/* Clear all UART interrupts */
UARTIntClear(get_dev_conf(dev)->regs,
UART_INT_OE | UART_INT_BE | UART_INT_PE |
UART_INT_FE | UART_INT_RT | UART_INT_TX |
UART_INT_RX | UART_INT_CTS);
if (flow_ctrl) {
UARTHwFlowControlEnable(get_dev_conf(dev)->regs);
} else {
UARTHwFlowControlDisable(get_dev_conf(dev)->regs);
}
/* Re-enable UART */
UARTEnable(get_dev_conf(dev)->regs);
/* Disabled FIFOs act as 1-byte-deep holding registers (character mode) */
UARTFIFODisable(get_dev_conf(dev)->regs);
get_dev_data(dev)->uart_config = *cfg;
return 0;
}
static int uart_cc13xx_cc26xx_config_get(const struct device *dev,
struct uart_config *cfg)
{
*cfg = get_dev_data(dev)->uart_config;
return 0;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_cc13xx_cc26xx_fifo_fill(const struct device *dev,
const uint8_t *buf,
int len)
{
int n = 0;
while (n < len) {
if (!UARTCharPutNonBlocking(get_dev_conf(dev)->regs, buf[n])) {
break;
}
n++;
}
return n;
}
static int uart_cc13xx_cc26xx_fifo_read(const struct device *dev,
uint8_t *buf,
const int len)
{
int c, n;
n = 0;
while (n < len) {
c = UARTCharGetNonBlocking(get_dev_conf(dev)->regs);
if (c == -1) {
break;
}
buf[n++] = c;
}
return n;
}
static void uart_cc13xx_cc26xx_irq_tx_enable(const struct device *dev)
{
#if defined(CONFIG_SYS_POWER_MANAGEMENT) && \
defined(CONFIG_SYS_POWER_SLEEP_STATES)
if (!get_dev_data(dev)->tx_constrained) {
/*
* When tx irq is enabled, it is implicit that we are expecting
* to transmit using the uart, hence we should no longer go
* into standby.
*
* Instead of using device_busy_set(), which currently does
* not impact the PM policy, we specifically disable the
* standby mode instead, since it is the power state that
* would interfere with a transfer.
*/
sys_pm_ctrl_disable_state(SYS_POWER_STATE_SLEEP_2);
get_dev_data(dev)->tx_constrained = true;
}
#endif
UARTIntEnable(get_dev_conf(dev)->regs, UART_INT_TX);
}
static void uart_cc13xx_cc26xx_irq_tx_disable(const struct device *dev)
{
UARTIntDisable(get_dev_conf(dev)->regs, UART_INT_TX);
#if defined(CONFIG_SYS_POWER_MANAGEMENT) && \
defined(CONFIG_SYS_POWER_SLEEP_STATES)
if (get_dev_data(dev)->tx_constrained) {
sys_pm_ctrl_enable_state(SYS_POWER_STATE_SLEEP_2);
get_dev_data(dev)->tx_constrained = false;
}
#endif
}
static int uart_cc13xx_cc26xx_irq_tx_ready(const struct device *dev)
{
return UARTSpaceAvail(get_dev_conf(dev)->regs) ? 1 : 0;
}
static void uart_cc13xx_cc26xx_irq_rx_enable(const struct device *dev)
{
#if defined(CONFIG_SYS_POWER_MANAGEMENT) && \
defined(CONFIG_SYS_POWER_SLEEP_STATES)
/*
* When rx is enabled, it is implicit that we are expecting
* to receive from the uart, hence we can no longer go into
* standby.
*/
if (!get_dev_data(dev)->rx_constrained) {
sys_pm_ctrl_disable_state(SYS_POWER_STATE_SLEEP_2);
get_dev_data(dev)->rx_constrained = true;
}
#endif
UARTIntEnable(get_dev_conf(dev)->regs, UART_INT_RX);
}
static void uart_cc13xx_cc26xx_irq_rx_disable(const struct device *dev)
{
#if defined(CONFIG_SYS_POWER_MANAGEMENT) && \
defined(CONFIG_SYS_POWER_SLEEP_STATES)
if (get_dev_data(dev)->rx_constrained) {
sys_pm_ctrl_enable_state(SYS_POWER_STATE_SLEEP_2);
get_dev_data(dev)->rx_constrained = false;
}
#endif
UARTIntDisable(get_dev_conf(dev)->regs, UART_INT_RX);
}
static int uart_cc13xx_cc26xx_irq_tx_complete(const struct device *dev)
{
return UARTBusy(get_dev_conf(dev)->regs) ? 0 : 1;
}
static int uart_cc13xx_cc26xx_irq_rx_ready(const struct device *dev)
{
return UARTCharsAvail(get_dev_conf(dev)->regs) ? 1 : 0;
}
static void uart_cc13xx_cc26xx_irq_err_enable(const struct device *dev)
{
return UARTIntEnable(get_dev_conf(dev)->regs,
UART_INT_OE | UART_INT_BE | UART_INT_PE |
UART_INT_FE);
}
static void uart_cc13xx_cc26xx_irq_err_disable(const struct device *dev)
{
return UARTIntDisable(get_dev_conf(dev)->regs,
UART_INT_OE | UART_INT_BE | UART_INT_PE |
UART_INT_FE);
}
static int uart_cc13xx_cc26xx_irq_is_pending(const struct device *dev)
{
uint32_t status = UARTIntStatus(get_dev_conf(dev)->regs, true);
return status & (UART_INT_TX | UART_INT_RX) ? 1 : 0;
}
static int uart_cc13xx_cc26xx_irq_update(const struct device *dev)
{
ARG_UNUSED(dev);
return 1;
}
static void uart_cc13xx_cc26xx_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *user_data)
{
struct uart_cc13xx_cc26xx_data *data = get_dev_data(dev);
data->callback = cb;
data->user_data = user_data;
}
static void uart_cc13xx_cc26xx_isr(void *arg)
{
const struct device *dev = (const struct device *)arg;
struct uart_cc13xx_cc26xx_data *data = get_dev_data(dev);
if (data->callback) {
data->callback(dev, data->user_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_SYS_POWER_MANAGEMENT
/*
* ======== postNotifyFxn ========
* Called by Power module when waking up the CPU from Standby, to support
* the case when SYS_POWER_MANAGEMENT is set but DEVICE_POWER_MANAGEMENT is
* not. The uart needs to be reconfigured afterwards unless Zephyr's device
* PM turned it off, in which case it'd be responsible for turning it back
* on and reconfiguring it.
*/
static int postNotifyFxn(unsigned int eventType, uintptr_t eventArg,
uintptr_t clientArg)
{
const struct device *dev = (const struct device *)clientArg;
int ret = Power_NOTIFYDONE;
int16_t res_id;
/* Reconfigure the hardware if returning from standby */
if (eventType == PowerCC26XX_AWAKE_STANDBY) {
if (get_dev_conf(dev)->regs ==
DT_INST_REG_ADDR(0)) {
res_id = PowerCC26XX_PERIPH_UART0;
} else { /* DT_INST_REG_ADDR(1) */
res_id = PowerCC26X2_PERIPH_UART1;
}
if (Power_getDependencyCount(res_id) != 0) {
/*
* Reconfigure and enable UART only if not
* actively powered down
*/
if (uart_cc13xx_cc26xx_configure(dev,
&get_dev_data(dev)->uart_config) != 0) {
ret = Power_NOTIFYERROR;
}
}
}
return (ret);
}
#endif
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static int uart_cc13xx_cc26xx_set_power_state(const struct device *dev,
uint32_t new_state)
{
int ret = 0;
if ((new_state == DEVICE_PM_ACTIVE_STATE) &&
(new_state != get_dev_data(dev)->pm_state)) {
if (get_dev_conf(dev)->regs ==
DT_INST_REG_ADDR(0)) {
Power_setDependency(PowerCC26XX_PERIPH_UART0);
} else {
Power_setDependency(PowerCC26X2_PERIPH_UART1);
}
/* Configure and enable UART */
ret = uart_cc13xx_cc26xx_configure(dev,
&get_dev_data(dev)->uart_config);
if (ret == 0) {
get_dev_data(dev)->pm_state = new_state;
}
} else {
__ASSERT_NO_MSG(new_state == DEVICE_PM_LOW_POWER_STATE ||
new_state == DEVICE_PM_SUSPEND_STATE ||
new_state == DEVICE_PM_OFF_STATE);
if (get_dev_data(dev)->pm_state == DEVICE_PM_ACTIVE_STATE) {
UARTDisable(get_dev_conf(dev)->regs);
/*
* Release power dependency - i.e. potentially power
* down serial domain.
*/
if (get_dev_conf(dev)->regs ==
DT_INST_REG_ADDR(0)) {
Power_releaseDependency(
PowerCC26XX_PERIPH_UART0);
} else {
Power_releaseDependency(
PowerCC26X2_PERIPH_UART1);
}
get_dev_data(dev)->pm_state = new_state;
}
}
return ret;
}
static int uart_cc13xx_cc26xx_pm_control(const struct device *dev,
uint32_t ctrl_command,
void *context, device_pm_cb cb,
void *arg)
{
int ret = 0;
if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
uint32_t new_state = *((const uint32_t *)context);
if (new_state != get_dev_data(dev)->pm_state) {
ret = uart_cc13xx_cc26xx_set_power_state(dev,
new_state);
}
} else {
__ASSERT_NO_MSG(ctrl_command == DEVICE_PM_GET_POWER_STATE);
*((uint32_t *)context) = get_dev_data(dev)->pm_state;
}
if (cb) {
cb(dev, ret, context, arg);
}
return ret;
}
#endif /* CONFIG_DEVICE_POWER_MANAGEMENT */
static const struct uart_driver_api uart_cc13xx_cc26xx_driver_api = {
.poll_in = uart_cc13xx_cc26xx_poll_in,
.poll_out = uart_cc13xx_cc26xx_poll_out,
.err_check = uart_cc13xx_cc26xx_err_check,
.configure = uart_cc13xx_cc26xx_configure,
.config_get = uart_cc13xx_cc26xx_config_get,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_cc13xx_cc26xx_fifo_fill,
.fifo_read = uart_cc13xx_cc26xx_fifo_read,
.irq_tx_enable = uart_cc13xx_cc26xx_irq_tx_enable,
.irq_tx_disable = uart_cc13xx_cc26xx_irq_tx_disable,
.irq_tx_ready = uart_cc13xx_cc26xx_irq_tx_ready,
.irq_rx_enable = uart_cc13xx_cc26xx_irq_rx_enable,
.irq_rx_disable = uart_cc13xx_cc26xx_irq_rx_disable,
.irq_tx_complete = uart_cc13xx_cc26xx_irq_tx_complete,
.irq_rx_ready = uart_cc13xx_cc26xx_irq_rx_ready,
.irq_err_enable = uart_cc13xx_cc26xx_irq_err_enable,
.irq_err_disable = uart_cc13xx_cc26xx_irq_err_disable,
.irq_is_pending = uart_cc13xx_cc26xx_irq_is_pending,
.irq_update = uart_cc13xx_cc26xx_irq_update,
.irq_callback_set = uart_cc13xx_cc26xx_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#ifdef CONFIG_SYS_POWER_MANAGEMENT
#define UART_CC13XX_CC26XX_POWER_UART(n) \
do { \
get_dev_data(dev)->rx_constrained = false; \
get_dev_data(dev)->tx_constrained = false; \
\
/* Set Power dependencies */ \
if (DT_INST_REG_ADDR(n) == 0x40001000) { \
Power_setDependency(PowerCC26XX_PERIPH_UART0); \
} else { \
Power_setDependency(PowerCC26X2_PERIPH_UART1); \
} \
\
/* Register notification function */ \
Power_registerNotify(&get_dev_data(dev)->postNotify, \
PowerCC26XX_AWAKE_STANDBY, \
postNotifyFxn, (uintptr_t)dev); \
} while (0)
#else
#define UART_CC13XX_CC26XX_POWER_UART(n) \
do { \
uint32_t domain, periph; \
\
/* Enable UART power domain */ \
if (DT_INST_REG_ADDR(n) == 0x40001000) { \
domain = PRCM_DOMAIN_SERIAL; \
periph = PRCM_PERIPH_UART0; \
} else { \
domain = PRCM_DOMAIN_PERIPH; \
periph = PRCM_PERIPH_UART1; \
} \
PRCMPowerDomainOn(domain); \
\
/* Enable UART peripherals */ \
PRCMPeripheralRunEnable(periph); \
PRCMPeripheralSleepEnable(periph); \
\
/* Load PRCM settings */ \
PRCMLoadSet(); \
while (!PRCMLoadGet()) { \
continue; \
} \
\
/* UART should not be accessed until power domain is on. */ \
while (PRCMPowerDomainStatus(domain) != \
PRCM_DOMAIN_POWER_ON) { \
continue; \
} \
} while (0)
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define UART_CC13XX_CC26XX_IRQ_CFG(n) \
do { \
UARTIntClear(get_dev_conf(dev)->regs, UART_INT_RX); \
\
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
uart_cc13xx_cc26xx_isr, \
DEVICE_GET(uart_cc13xx_cc26xx_##n), \
0); \
irq_enable(DT_INST_IRQN(n)); \
/* Causes an initial TX ready INT when TX INT enabled */\
UARTCharPutNonBlocking(get_dev_conf(dev)->regs, '\0'); \
} while (0)
#define UART_CC13XX_CC26XX_INT_FIELDS \
.callback = NULL, \
.user_data = NULL,
#else
#define UART_CC13XX_CC26XX_IRQ_CFG(n)
#define UART_CC13XX_CC26XX_INT_FIELDS
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#define UART_CC13XX_CC26XX_DEVICE_DEFINE(n) \
DEVICE_DEFINE(uart_cc13xx_cc26xx_##n, DT_INST_LABEL(n), \
uart_cc13xx_cc26xx_init_##n, \
uart_cc13xx_cc26xx_pm_control, \
&uart_cc13xx_cc26xx_data_##n, &uart_cc13xx_cc26xx_config_##n,\
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&uart_cc13xx_cc26xx_driver_api)
#define UART_CC13XX_CC26XX_DEVICE_API_INIT(n) \
DEVICE_AND_API_INIT(uart_cc13xx_cc26xx_##n, DT_INST_LABEL(n), \
uart_cc13xx_cc26xx_init_##n, &uart_cc13xx_cc26xx_data_##n, \
&uart_cc13xx_cc26xx_config_##n, PRE_KERNEL_1, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&uart_cc13xx_cc26xx_driver_api)
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
#define UART_CC13XX_CC26XX_DEVICE_INIT(n) \
UART_CC13XX_CC26XX_DEVICE_DEFINE(n)
#define UART_CC13XX_CC26XX_INIT_PM_STATE \
do { \
get_dev_data(dev)->pm_state = DEVICE_PM_ACTIVE_STATE; \
} while (0)
#else
#define UART_CC13XX_CC26XX_DEVICE_INIT(n) \
UART_CC13XX_CC26XX_DEVICE_API_INIT(n)
#define UART_CC13XX_CC26XX_INIT_PM_STATE
#endif
#define UART_CC13XX_CC26XX_INIT_FUNC(n) \
static int uart_cc13xx_cc26xx_init_##n(const struct device *dev) \
{ \
int ret; \
\
UART_CC13XX_CC26XX_INIT_PM_STATE; \
\
UART_CC13XX_CC26XX_POWER_UART(n); \
\
/* Configure IOC module to map UART signals to pins */ \
IOCPortConfigureSet(GET_PIN(n, tx_pin), GET_PORT(n, tx_pin),\
IOC_STD_OUTPUT); \
IOCPortConfigureSet(GET_PIN(n, rx_pin), GET_PORT(n, rx_pin),\
IOC_STD_INPUT); \
\
/* Configure and enable UART */ \
ret = uart_cc13xx_cc26xx_configure(dev, \
&get_dev_data(dev)->uart_config); \
\
/* Enable interrupts */ \
UART_CC13XX_CC26XX_IRQ_CFG(n); \
\
return ret; \
}
#define UART_CC13XX_CC26XX_INIT(n) \
DEVICE_DECLARE(uart_cc13xx_cc26xx_##n); \
\
UART_CC13XX_CC26XX_INIT_FUNC(n); \
\
static const struct uart_device_config \
uart_cc13xx_cc26xx_config_##n = { \
.regs = DT_INST_REG_ADDR(n), \
.sys_clk_freq = DT_INST_PROP_BY_PHANDLE(n, clocks, \
clock_frequency) \
}; \
\
static struct uart_cc13xx_cc26xx_data \
uart_cc13xx_cc26xx_data_##n = { \
.uart_config = { \
.baudrate = DT_INST_PROP(n, current_speed), \
.parity = UART_CFG_PARITY_NONE, \
.stop_bits = UART_CFG_STOP_BITS_1, \
.data_bits = UART_CFG_DATA_BITS_8, \
.flow_ctrl = UART_CFG_FLOW_CTRL_NONE, \
}, \
UART_CC13XX_CC26XX_INT_FIELDS \
}; \
\
UART_CC13XX_CC26XX_DEVICE_INIT(n);
DT_INST_FOREACH_STATUS_OKAY(UART_CC13XX_CC26XX_INIT)