zephyr/drivers/pwm/pwm_rcar.c

269 lines
8.2 KiB
C
Raw Normal View History

/*
* Copyright (c) 2022 IoT.bzh
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT renesas_pwm_rcar
#include <errno.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/clock_control/renesas_cpg_mssr.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/pwm.h>
#include <soc.h>
#define LOG_LEVEL CONFIG_PWM_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pwm_rcar);
/* PWM Controller capabilities */
#define RCAR_PWM_MAX_CYCLE 1023U
#define RCAR_PWM_MAX_DIV 24U
#define RCAR_PWM_MAX_CHANNEL 6
/* Registers */
#define RCAR_PWM_REG_SHIFT 0x1000
#define RCAR_PWM_CR(channel) \
((uint32_t)((channel * RCAR_PWM_REG_SHIFT)) + 0x00) /* PWM Control Register */
#define RCAR_PWM_CNT(channel) \
((uint32_t)((channel * RCAR_PWM_REG_SHIFT)) + 0x04) /* PWM Count Register */
/* PWMCR (PWM Control Register) */
#define RCAR_PWM_CR_CC_MASK 0x000f0000 /* Clock Control */
#define RCAR_PWM_CR_CC_SHIFT 16
#define RCAR_PWM_CR_CCMD BIT(15) /* Frequency Division Mode */
#define RCAR_PWM_CR_SYNC BIT(11)
#define RCAR_PWM_CR_SS BIT(4) /* Single Pulse Output */
#define RCAR_PWM_CR_EN BIT(0) /* Channel Enable */
/* PWM Diviser is on 5 bits (CC combined with CCMD) */
#define RCAR_PWM_DIVISER_MASK (RCAR_PWM_CR_CC_MASK | RCAR_PWM_CR_CCMD)
#define RCAR_PWM_DIVISER_SHIFT 15
/* PWMCNT (PWM Count Register) */
#define RCAR_PWM_CNT_CYC_MASK 0x03ff0000 /* PWM Cycle */
#define RCAR_PWM_CNT_CYC_SHIFT 16
#define RCAR_PWM_CNT_PH_MASK 0x000003ff /* PWM High-Level Period */
#define RCAR_PWM_CNT_PH_SHIFT 0
struct pwm_rcar_cfg {
uint32_t reg_addr;
const struct device *clock_dev;
struct rcar_cpg_clk core_clk;
struct rcar_cpg_clk mod_clk;
const struct pinctrl_dev_config *pcfg;
};
struct pwm_rcar_data {
uint32_t clk_rate;
};
static uint32_t pwm_rcar_read(const struct pwm_rcar_cfg *config, uint32_t offs)
{
return sys_read32(config->reg_addr + offs);
}
static void pwm_rcar_write(const struct pwm_rcar_cfg *config, uint32_t offs, uint32_t value)
{
sys_write32(value, config->reg_addr + offs);
}
static void pwm_rcar_write_bit(const struct pwm_rcar_cfg *config, uint32_t offs, uint32_t bits,
bool value)
{
uint32_t reg_val = pwm_rcar_read(config, offs);
if (value) {
reg_val |= bits;
} else {
reg_val &= ~(bits);
}
pwm_rcar_write(config, offs, reg_val);
}
static int pwm_rcar_update_clk(const struct pwm_rcar_cfg *config, uint32_t channel,
uint32_t *period_cycles, uint32_t *pulse_cycles)
{
uint32_t reg_val, power, diviser;
power = pwm_rcar_read(config, RCAR_PWM_CR(channel)) & RCAR_PWM_DIVISER_MASK;
power = power >> RCAR_PWM_DIVISER_SHIFT;
diviser = 1 << power;
LOG_DBG("Found old diviser : 2^%d=%d", power, diviser);
/* Looking for the best possible clock diviser */
if (*period_cycles > RCAR_PWM_MAX_CYCLE) {
/* Reducing clock speed */
while (*period_cycles > RCAR_PWM_MAX_CYCLE) {
diviser *= 2;
*period_cycles /= 2;
*pulse_cycles /= 2;
power++;
if (power > RCAR_PWM_MAX_DIV) {
return -ENOTSUP;
}
}
} else {
/* Increasing clock speed */
while (*period_cycles < (RCAR_PWM_MAX_CYCLE / 2)) {
if (power == 0) {
return -ENOTSUP;
}
diviser /= 2;
*period_cycles *= 2;
*pulse_cycles *= 2;
power--;
}
}
LOG_DBG("Found new diviser : 2^%d=%d\n", power, diviser);
/* Set new clock Diviser */
reg_val = pwm_rcar_read(config, RCAR_PWM_CR(channel));
reg_val &= ~RCAR_PWM_DIVISER_MASK;
reg_val |= (power << RCAR_PWM_DIVISER_SHIFT);
pwm_rcar_write(config, RCAR_PWM_CR(channel), reg_val);
return 0;
}
static int pwm_rcar_set_cycles(const struct device *dev, uint32_t channel, uint32_t period_cycles,
uint32_t pulse_cycles, pwm_flags_t flags)
{
const struct pwm_rcar_cfg *config = dev->config;
uint32_t reg_val;
int ret = 0;
if (channel > RCAR_PWM_MAX_CHANNEL) {
return -ENOTSUP;
}
if (flags != PWM_POLARITY_NORMAL) {
return -ENOTSUP;
}
/* Prohibited values */
if (period_cycles == 0U || pulse_cycles == 0U || pulse_cycles > period_cycles) {
return -EINVAL;
}
LOG_DBG("base_reg=0x%x, pulse_cycles=%d, period_cycles=%d,"
" duty_cycle=%d",
config->reg_addr, pulse_cycles, period_cycles,
(pulse_cycles * 100U / period_cycles));
/* Disable PWM */
pwm_rcar_write_bit(config, RCAR_PWM_CR(channel), RCAR_PWM_CR_EN, false);
/* Set continuous mode */
pwm_rcar_write_bit(config, RCAR_PWM_CR(channel), RCAR_PWM_CR_SS, false);
/* Enable SYNC mode */
pwm_rcar_write_bit(config, RCAR_PWM_CR(channel), RCAR_PWM_CR_SYNC, true);
/*
* Set clock counter according to the requested period_cycles
* if period_cycles is less than half of the counter, then the
* clock diviser could be updated as the diviser is a modulo 2.
*/
if (period_cycles > RCAR_PWM_MAX_CYCLE || period_cycles < (RCAR_PWM_MAX_CYCLE / 2)) {
LOG_DBG("Adapting frequency diviser...");
ret = pwm_rcar_update_clk(config, channel, &period_cycles, &pulse_cycles);
if (ret != 0) {
return ret;
}
}
/* Set total period cycle */
reg_val = pwm_rcar_read(config, RCAR_PWM_CNT(channel));
reg_val &= ~(RCAR_PWM_CNT_CYC_MASK);
reg_val |= (period_cycles << RCAR_PWM_CNT_CYC_SHIFT);
pwm_rcar_write(config, RCAR_PWM_CNT(channel), reg_val);
/* Set high level period cycle */
reg_val = pwm_rcar_read(config, RCAR_PWM_CNT(channel));
reg_val &= ~(RCAR_PWM_CNT_PH_MASK);
reg_val |= (pulse_cycles << RCAR_PWM_CNT_PH_SHIFT);
pwm_rcar_write(config, RCAR_PWM_CNT(channel), reg_val);
/* Enable PWM */
pwm_rcar_write_bit(config, RCAR_PWM_CR(channel), RCAR_PWM_CR_EN, true);
return ret;
}
static int pwm_rcar_get_cycles_per_sec(const struct device *dev, uint32_t channel, uint64_t *cycles)
{
const struct pwm_rcar_cfg *config = dev->config;
struct pwm_rcar_data *data = dev->data;
uint32_t diviser;
if (channel > RCAR_PWM_MAX_CHANNEL) {
return -ENOTSUP;
}
diviser = pwm_rcar_read(config, RCAR_PWM_CR(channel)) & RCAR_PWM_DIVISER_MASK;
diviser = diviser >> RCAR_PWM_DIVISER_SHIFT;
*cycles = data->clk_rate >> diviser;
LOG_DBG("Actual division: %d and Frequency: %d Hz", diviser, (uint32_t)*cycles);
return 0;
}
static int pwm_rcar_init(const struct device *dev)
{
const struct pwm_rcar_cfg *config = dev->config;
struct pwm_rcar_data *data = dev->data;
int ret;
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
ret = clock_control_on(config->clock_dev, (clock_control_subsys_t *)&config->mod_clk);
if (ret < 0) {
return ret;
}
ret = clock_control_get_rate(config->clock_dev, (clock_control_subsys_t *)&config->core_clk,
&data->clk_rate);
if (ret < 0) {
return ret;
}
return 0;
}
static const struct pwm_driver_api pwm_rcar_driver_api = {
.set_cycles = pwm_rcar_set_cycles,
.get_cycles_per_sec = pwm_rcar_get_cycles_per_sec,
};
/* Device Instantiation */
#define PWM_DEVICE_RCAR_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
static const struct pwm_rcar_cfg pwm_rcar_cfg_##n = { \
.reg_addr = DT_INST_REG_ADDR(n), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.mod_clk.module = DT_INST_CLOCKS_CELL_BY_IDX(n, 0, module), \
.mod_clk.domain = DT_INST_CLOCKS_CELL_BY_IDX(n, 0, domain), \
.core_clk.module = DT_INST_CLOCKS_CELL_BY_IDX(n, 1, module), \
.core_clk.domain = DT_INST_CLOCKS_CELL_BY_IDX(n, 1, domain), \
}; \
static struct pwm_rcar_data pwm_rcar_data_##n; \
DEVICE_DT_INST_DEFINE(n, pwm_rcar_init, NULL, &pwm_rcar_data_##n, &pwm_rcar_cfg_##n, \
POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \
&pwm_rcar_driver_api);
DT_INST_FOREACH_STATUS_OKAY(PWM_DEVICE_RCAR_INIT)