zephyr/subsys/net/buf.c

508 lines
12 KiB
C
Raw Normal View History

/* buf.c - Buffer management */
/*
* Copyright (c) 2015 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <errno.h>
#include <stddef.h>
#include <string.h>
#include <misc/byteorder.h>
#include <net/buf.h>
#if defined(CONFIG_NET_BUF_LOG)
#define SYS_LOG_DOMAIN "net/buf"
#define SYS_LOG_LEVEL CONFIG_SYS_LOG_NET_BUF_LEVEL
#include <logging/sys_log.h>
#define NET_BUF_DBG(fmt, ...) SYS_LOG_DBG("(%p) " fmt, k_current_get(), \
##__VA_ARGS__)
#define NET_BUF_ERR(fmt, ...) SYS_LOG_ERR(fmt, ##__VA_ARGS__)
#define NET_BUF_WARN(fmt, ...) SYS_LOG_WRN(fmt, ##__VA_ARGS__)
#define NET_BUF_INFO(fmt, ...) SYS_LOG_INF(fmt, ##__VA_ARGS__)
#define NET_BUF_ASSERT(cond) do { if (!(cond)) { \
NET_BUF_ERR("assert: '" #cond "' failed"); \
} } while (0)
#else
#define NET_BUF_DBG(fmt, ...)
#define NET_BUF_ERR(fmt, ...)
#define NET_BUF_WARN(fmt, ...)
#define NET_BUF_INFO(fmt, ...)
#define NET_BUF_ASSERT(cond)
#endif /* CONFIG_NET_BUF_LOG */
/* Helpers to access the storage array, since we don't have access to its
* type at this point anymore.
*/
#define BUF_SIZE(pool) (sizeof(struct net_buf) + \
ROUND_UP(pool->buf_size, 4) + \
ROUND_UP(pool->user_data_size, 4))
#define UNINIT_BUF(pool, n) (struct net_buf *)(((uint8_t *)(pool->__bufs)) + \
((n) * BUF_SIZE(pool)))
static inline struct net_buf *pool_get_uninit(struct net_buf_pool *pool,
uint16_t uninit_count)
{
struct net_buf *buf;
buf = UNINIT_BUF(pool, pool->buf_count - uninit_count);
buf->pool = pool;
buf->size = pool->buf_size;
return buf;
}
#if defined(CONFIG_NET_BUF_LOG)
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
struct net_buf *net_buf_alloc_debug(struct net_buf_pool *pool, int32_t timeout,
const char *func, int line)
#else
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
struct net_buf *net_buf_alloc(struct net_buf_pool *pool, int32_t timeout)
#endif
{
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
struct net_buf *buf;
unsigned int key;
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
NET_BUF_ASSERT(pool);
NET_BUF_DBG("%s():%d: pool %p timeout %d", func, line, pool, timeout);
/* We need to lock interrupts temporarily to prevent race conditions
* when accessing pool->uninit_count.
*/
key = irq_lock();
/* If there are uninitialized buffers we're guaranteed to succeed
* with the allocation one way or another.
*/
if (pool->uninit_count) {
uint16_t uninit_count;
/* If this is not the first access to the pool, we can
* be opportunistic and try to fetch a previously used
* buffer from the LIFO with K_NO_WAIT.
*/
if (pool->uninit_count < pool->buf_count) {
buf = k_lifo_get(&pool->free, K_NO_WAIT);
if (buf) {
irq_unlock(key);
goto success;
}
}
uninit_count = pool->uninit_count--;
irq_unlock(key);
buf = pool_get_uninit(pool, uninit_count);
goto success;
}
irq_unlock(key);
#if defined(CONFIG_NET_BUF_LOG) && SYS_LOG_LEVEL >= SYS_LOG_LEVEL_WARNING
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
if (timeout == K_FOREVER) {
buf = k_lifo_get(&pool->free, K_NO_WAIT);
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
if (!buf) {
NET_BUF_WARN("%s():%d: Pool %p low on buffers.",
func, line, pool);
buf = k_lifo_get(&pool->free, timeout);
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
}
} else {
buf = k_lifo_get(&pool->free, timeout);
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
}
#else
buf = k_lifo_get(&pool->free, timeout);
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
#endif
if (!buf) {
NET_BUF_ERR("%s():%d: Failed to get free buffer", func, line);
return NULL;
}
success:
NET_BUF_DBG("allocated buf %p", buf);
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
buf->ref = 1;
buf->len = 0;
buf->data = buf->__buf;
buf->flags = 0;
buf->frags = NULL;
return buf;
}
#if defined(CONFIG_NET_BUF_LOG)
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
struct net_buf *net_buf_get_debug(struct k_fifo *fifo, int32_t timeout,
const char *func, int line)
#else
struct net_buf *net_buf_get(struct k_fifo *fifo, int32_t timeout)
#endif
{
struct net_buf *buf, *frag;
NET_BUF_DBG("%s():%d: fifo %p timeout %d", func, line, fifo, timeout);
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
buf = k_fifo_get(fifo, timeout);
if (!buf) {
NET_BUF_ERR("Failed to get free buffer");
return NULL;
}
NET_BUF_DBG("%s():%d: buf %p fifo %p", func, line, buf, fifo);
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
/* Get any fragments belonging to this buffer */
for (frag = buf; (frag->flags & NET_BUF_FRAGS); frag = frag->frags) {
frag->frags = k_fifo_get(fifo, K_NO_WAIT);
NET_BUF_ASSERT(frag->frags);
/* The fragments flag is only for FIFO-internal usage */
frag->flags &= ~NET_BUF_FRAGS;
}
/* Mark the end of the fragment list */
frag->frags = NULL;
return buf;
}
void net_buf_reserve(struct net_buf *buf, size_t reserve)
{
NET_BUF_ASSERT(buf);
NET_BUF_ASSERT(buf->len == 0);
NET_BUF_DBG("buf %p reserve %zu", buf, reserve);
buf->data = buf->__buf + reserve;
}
void net_buf_put(struct k_fifo *fifo, struct net_buf *buf)
{
struct net_buf *tail;
NET_BUF_ASSERT(fifo);
NET_BUF_ASSERT(buf);
for (tail = buf; tail->frags; tail = tail->frags) {
tail->flags |= NET_BUF_FRAGS;
}
k_fifo_put_list(fifo, buf, tail);
}
#if defined(CONFIG_NET_BUF_LOG)
void net_buf_unref_debug(struct net_buf *buf, const char *func, int line)
#else
void net_buf_unref(struct net_buf *buf)
#endif
{
NET_BUF_ASSERT(buf);
while (buf) {
struct net_buf *frags = buf->frags;
#if defined(CONFIG_NET_BUF_LOG)
if (!buf->ref) {
NET_BUF_ERR("%s():%d: buf %p double free", func, line,
buf);
return;
}
#endif
NET_BUF_DBG("buf %p ref %u pool %p frags %p", buf, buf->ref,
buf->pool, buf->frags);
if (--buf->ref > 0) {
return;
}
buf->frags = NULL;
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
if (buf->pool->destroy) {
buf->pool->destroy(buf);
} else {
net_buf_destroy(buf);
}
buf = frags;
}
}
struct net_buf *net_buf_ref(struct net_buf *buf)
{
NET_BUF_ASSERT(buf);
NET_BUF_DBG("buf %p (old) ref %u pool %p",
buf, buf->ref, buf->pool);
buf->ref++;
return buf;
}
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
struct net_buf *net_buf_clone(struct net_buf *buf, int32_t timeout)
{
struct net_buf *clone;
NET_BUF_ASSERT(buf);
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
clone = net_buf_alloc(buf->pool, timeout);
if (!clone) {
return NULL;
}
net: buf: Redesigned pool & buffer allocation API Until now it has been necessary to separately define a k_fifo and an array of buffers when creating net_buf pools. This has been a bit of an inconvenience as well as blurred the line of what exactly constitutes the "pool". This patch removes the NET_BUF_POOL() macro and replaces it with a NET_BUF_POOL_DEFINE() macro that internally expands into the buffer array and new net_buf_pool struct with a given name: NET_BUF_POOL_DEFINE(pool_name, ...); Having a dedicated context struct for the pool has the added benefit that we can start moving there net_buf members that have the same value for all buffers from the same pool. The first such member that gets moved is the destroy callback, thus shrinking net_buf by four bytes. Another potential candidate is the user_data_size, however right not that's left out since it would just leave 2 bytes of padding in net_buf (i.e. not influence its size). Another common value is buf->size, however that one is also used by net_buf_simple and can therefore not be moved. This patch also splits getting buffers from a FIFO and allocating a new buffer from a pool into two separate APIs: net_buf_get and net_buf_alloc, thus simplifying the APIs and their usage. There is no separate 'reserve_head' parameter anymore when allocating, rather the user is expected to call net_buf_reserve() afterwards if something else than 0 headroom is desired. Change-Id: Id91b1e5c2be2deb1274dde47f5edebfe29af383a Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-10-18 22:24:51 +02:00
net_buf_reserve(clone, net_buf_headroom(buf));
/* TODO: Add reference to the original buffer instead of copying it. */
memcpy(net_buf_add(clone, buf->len), buf->data, buf->len);
return clone;
}
struct net_buf *net_buf_frag_last(struct net_buf *buf)
{
NET_BUF_ASSERT(buf);
while (buf->frags) {
buf = buf->frags;
}
return buf;
}
void net_buf_frag_insert(struct net_buf *parent, struct net_buf *frag)
{
NET_BUF_ASSERT(parent);
NET_BUF_ASSERT(frag);
if (parent->frags) {
net_buf_frag_last(frag)->frags = parent->frags;
}
/* Take ownership of the fragment reference */
parent->frags = frag;
}
struct net_buf *net_buf_frag_add(struct net_buf *head, struct net_buf *frag)
{
NET_BUF_ASSERT(frag);
if (!head) {
return net_buf_ref(frag);
}
net_buf_frag_insert(net_buf_frag_last(head), frag);
return head;
}
struct net_buf *net_buf_frag_del(struct net_buf *parent, struct net_buf *frag)
{
struct net_buf *next_frag;
NET_BUF_ASSERT(frag);
if (parent) {
NET_BUF_ASSERT(parent->frags);
NET_BUF_ASSERT(parent->frags == frag);
parent->frags = frag->frags;
}
next_frag = frag->frags;
frag->frags = NULL;
net_buf_unref(frag);
return next_frag;
}
#if defined(CONFIG_NET_BUF_SIMPLE_LOG)
#define NET_BUF_SIMPLE_DBG(fmt, ...) NET_BUF_DBG(fmt, ##__VA_ARGS__)
#define NET_BUF_SIMPLE_ERR(fmt, ...) NET_BUF_ERR(fmt, ##__VA_ARGS__)
#define NET_BUF_SIMPLE_WARN(fmt, ...) NET_BUF_WARN(fmt, ##__VA_ARGS__)
#define NET_BUF_SIMPLE_INFO(fmt, ...) NET_BUF_INFO(fmt, ##__VA_ARGS__)
#define NET_BUF_SIMPLE_ASSERT(cond) NET_BUF_ASSERT(cond)
#else
#define NET_BUF_SIMPLE_DBG(fmt, ...)
#define NET_BUF_SIMPLE_ERR(fmt, ...)
#define NET_BUF_SIMPLE_WARN(fmt, ...)
#define NET_BUF_SIMPLE_INFO(fmt, ...)
#define NET_BUF_SIMPLE_ASSERT(cond)
#endif /* CONFIG_NET_BUF_SIMPLE_LOG */
void *net_buf_simple_add(struct net_buf_simple *buf, size_t len)
{
uint8_t *tail = net_buf_simple_tail(buf);
NET_BUF_SIMPLE_DBG("buf %p len %zu", buf, len);
NET_BUF_SIMPLE_ASSERT(net_buf_simple_tailroom(buf) >= len);
buf->len += len;
return tail;
}
void *net_buf_simple_add_mem(struct net_buf_simple *buf, const void *mem,
size_t len)
{
NET_BUF_SIMPLE_DBG("buf %p len %zu", buf, len);
return memcpy(net_buf_simple_add(buf, len), mem, len);
}
uint8_t *net_buf_simple_add_u8(struct net_buf_simple *buf, uint8_t val)
{
uint8_t *u8;
NET_BUF_SIMPLE_DBG("buf %p val 0x%02x", buf, val);
u8 = net_buf_simple_add(buf, 1);
*u8 = val;
return u8;
}
void net_buf_simple_add_le16(struct net_buf_simple *buf, uint16_t val)
{
NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);
val = sys_cpu_to_le16(val);
memcpy(net_buf_simple_add(buf, sizeof(val)), &val, sizeof(val));
}
void net_buf_simple_add_be16(struct net_buf_simple *buf, uint16_t val)
{
NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);
val = sys_cpu_to_be16(val);
memcpy(net_buf_simple_add(buf, sizeof(val)), &val, sizeof(val));
}
void net_buf_simple_add_le32(struct net_buf_simple *buf, uint32_t val)
{
NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);
val = sys_cpu_to_le32(val);
memcpy(net_buf_simple_add(buf, sizeof(val)), &val, sizeof(val));
}
void net_buf_simple_add_be32(struct net_buf_simple *buf, uint32_t val)
{
NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);
val = sys_cpu_to_be32(val);
memcpy(net_buf_simple_add(buf, sizeof(val)), &val, sizeof(val));
}
void *net_buf_simple_push(struct net_buf_simple *buf, size_t len)
{
NET_BUF_SIMPLE_DBG("buf %p len %zu", buf, len);
NET_BUF_SIMPLE_ASSERT(net_buf_simple_headroom(buf) >= len);
buf->data -= len;
buf->len += len;
return buf->data;
}
void net_buf_simple_push_le16(struct net_buf_simple *buf, uint16_t val)
{
NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);
val = sys_cpu_to_le16(val);
memcpy(net_buf_simple_push(buf, sizeof(val)), &val, sizeof(val));
}
void net_buf_simple_push_be16(struct net_buf_simple *buf, uint16_t val)
{
NET_BUF_SIMPLE_DBG("buf %p val %u", buf, val);
val = sys_cpu_to_be16(val);
memcpy(net_buf_simple_push(buf, sizeof(val)), &val, sizeof(val));
}
void net_buf_simple_push_u8(struct net_buf_simple *buf, uint8_t val)
{
uint8_t *data = net_buf_simple_push(buf, 1);
*data = val;
}
void *net_buf_simple_pull(struct net_buf_simple *buf, size_t len)
{
NET_BUF_SIMPLE_DBG("buf %p len %zu", buf, len);
NET_BUF_SIMPLE_ASSERT(buf->len >= len);
buf->len -= len;
return buf->data += len;
}
uint8_t net_buf_simple_pull_u8(struct net_buf_simple *buf)
{
uint8_t val;
val = buf->data[0];
net_buf_simple_pull(buf, 1);
return val;
}
uint16_t net_buf_simple_pull_le16(struct net_buf_simple *buf)
{
uint16_t val;
val = UNALIGNED_GET((uint16_t *)buf->data);
net_buf_simple_pull(buf, sizeof(val));
return sys_le16_to_cpu(val);
}
uint16_t net_buf_simple_pull_be16(struct net_buf_simple *buf)
{
uint16_t val;
val = UNALIGNED_GET((uint16_t *)buf->data);
net_buf_simple_pull(buf, sizeof(val));
return sys_be16_to_cpu(val);
}
uint32_t net_buf_simple_pull_le32(struct net_buf_simple *buf)
{
uint32_t val;
val = UNALIGNED_GET((uint32_t *)buf->data);
net_buf_simple_pull(buf, sizeof(val));
return sys_le32_to_cpu(val);
}
uint32_t net_buf_simple_pull_be32(struct net_buf_simple *buf)
{
uint32_t val;
val = UNALIGNED_GET((uint32_t *)buf->data);
net_buf_simple_pull(buf, sizeof(val));
return sys_be32_to_cpu(val);
}
size_t net_buf_simple_headroom(struct net_buf_simple *buf)
{
return buf->data - buf->__buf;
}
size_t net_buf_simple_tailroom(struct net_buf_simple *buf)
{
return buf->size - net_buf_simple_headroom(buf) - buf->len;
}