zephyr/kernel/timeout.c

363 lines
7.9 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
headers: Refactor kernel and arch headers. This commit refactors kernel and arch headers to establish a boundary between private and public interface headers. The refactoring strategy used in this commit is detailed in the issue This commit introduces the following major changes: 1. Establish a clear boundary between private and public headers by removing "kernel/include" and "arch/*/include" from the global include paths. Ideally, only kernel/ and arch/*/ source files should reference the headers in these directories. If these headers must be used by a component, these include paths shall be manually added to the CMakeLists.txt file of the component. This is intended to discourage applications from including private kernel and arch headers either knowingly and unknowingly. - kernel/include/ (PRIVATE) This directory contains the private headers that provide private kernel definitions which should not be visible outside the kernel and arch source code. All public kernel definitions must be added to an appropriate header located under include/. - arch/*/include/ (PRIVATE) This directory contains the private headers that provide private architecture-specific definitions which should not be visible outside the arch and kernel source code. All public architecture- specific definitions must be added to an appropriate header located under include/arch/*/. - include/ AND include/sys/ (PUBLIC) This directory contains the public headers that provide public kernel definitions which can be referenced by both kernel and application code. - include/arch/*/ (PUBLIC) This directory contains the public headers that provide public architecture-specific definitions which can be referenced by both kernel and application code. 2. Split arch_interface.h into "kernel-to-arch interface" and "public arch interface" divisions. - kernel/include/kernel_arch_interface.h * provides private "kernel-to-arch interface" definition. * includes arch/*/include/kernel_arch_func.h to ensure that the interface function implementations are always available. * includes sys/arch_interface.h so that public arch interface definitions are automatically included when including this file. - arch/*/include/kernel_arch_func.h * provides architecture-specific "kernel-to-arch interface" implementation. * only the functions that will be used in kernel and arch source files are defined here. - include/sys/arch_interface.h * provides "public arch interface" definition. * includes include/arch/arch_inlines.h to ensure that the architecture-specific public inline interface function implementations are always available. - include/arch/arch_inlines.h * includes architecture-specific arch_inlines.h in include/arch/*/arch_inline.h. - include/arch/*/arch_inline.h * provides architecture-specific "public arch interface" inline function implementation. * supersedes include/sys/arch_inline.h. 3. Refactor kernel and the existing architecture implementations. - Remove circular dependency of kernel and arch headers. The following general rules should be observed: * Never include any private headers from public headers * Never include kernel_internal.h in kernel_arch_data.h * Always include kernel_arch_data.h from kernel_arch_func.h * Never include kernel.h from kernel_struct.h either directly or indirectly. Only add the kernel structures that must be referenced from public arch headers in this file. - Relocate syscall_handler.h to include/ so it can be used in the public code. This is necessary because many user-mode public codes reference the functions defined in this header. - Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is necessary to provide architecture-specific thread definition for 'struct k_thread' in kernel.h. - Remove any private header dependencies from public headers using the following methods: * If dependency is not required, simply omit * If dependency is required, - Relocate a portion of the required dependencies from the private header to an appropriate public header OR - Relocate the required private header to make it public. This commit supersedes #20047, addresses #19666, and fixes #3056. Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2019-10-24 17:08:21 +02:00
#include <kernel.h>
#include <spinlock.h>
#include <ksched.h>
headers: Refactor kernel and arch headers. This commit refactors kernel and arch headers to establish a boundary between private and public interface headers. The refactoring strategy used in this commit is detailed in the issue This commit introduces the following major changes: 1. Establish a clear boundary between private and public headers by removing "kernel/include" and "arch/*/include" from the global include paths. Ideally, only kernel/ and arch/*/ source files should reference the headers in these directories. If these headers must be used by a component, these include paths shall be manually added to the CMakeLists.txt file of the component. This is intended to discourage applications from including private kernel and arch headers either knowingly and unknowingly. - kernel/include/ (PRIVATE) This directory contains the private headers that provide private kernel definitions which should not be visible outside the kernel and arch source code. All public kernel definitions must be added to an appropriate header located under include/. - arch/*/include/ (PRIVATE) This directory contains the private headers that provide private architecture-specific definitions which should not be visible outside the arch and kernel source code. All public architecture- specific definitions must be added to an appropriate header located under include/arch/*/. - include/ AND include/sys/ (PUBLIC) This directory contains the public headers that provide public kernel definitions which can be referenced by both kernel and application code. - include/arch/*/ (PUBLIC) This directory contains the public headers that provide public architecture-specific definitions which can be referenced by both kernel and application code. 2. Split arch_interface.h into "kernel-to-arch interface" and "public arch interface" divisions. - kernel/include/kernel_arch_interface.h * provides private "kernel-to-arch interface" definition. * includes arch/*/include/kernel_arch_func.h to ensure that the interface function implementations are always available. * includes sys/arch_interface.h so that public arch interface definitions are automatically included when including this file. - arch/*/include/kernel_arch_func.h * provides architecture-specific "kernel-to-arch interface" implementation. * only the functions that will be used in kernel and arch source files are defined here. - include/sys/arch_interface.h * provides "public arch interface" definition. * includes include/arch/arch_inlines.h to ensure that the architecture-specific public inline interface function implementations are always available. - include/arch/arch_inlines.h * includes architecture-specific arch_inlines.h in include/arch/*/arch_inline.h. - include/arch/*/arch_inline.h * provides architecture-specific "public arch interface" inline function implementation. * supersedes include/sys/arch_inline.h. 3. Refactor kernel and the existing architecture implementations. - Remove circular dependency of kernel and arch headers. The following general rules should be observed: * Never include any private headers from public headers * Never include kernel_internal.h in kernel_arch_data.h * Always include kernel_arch_data.h from kernel_arch_func.h * Never include kernel.h from kernel_struct.h either directly or indirectly. Only add the kernel structures that must be referenced from public arch headers in this file. - Relocate syscall_handler.h to include/ so it can be used in the public code. This is necessary because many user-mode public codes reference the functions defined in this header. - Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is necessary to provide architecture-specific thread definition for 'struct k_thread' in kernel.h. - Remove any private header dependencies from public headers using the following methods: * If dependency is not required, simply omit * If dependency is required, - Relocate a portion of the required dependencies from the private header to an appropriate public header OR - Relocate the required private header to make it public. This commit supersedes #20047, addresses #19666, and fixes #3056. Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2019-10-24 17:08:21 +02:00
#include <timeout_q.h>
#include <syscall_handler.h>
headers: Refactor kernel and arch headers. This commit refactors kernel and arch headers to establish a boundary between private and public interface headers. The refactoring strategy used in this commit is detailed in the issue This commit introduces the following major changes: 1. Establish a clear boundary between private and public headers by removing "kernel/include" and "arch/*/include" from the global include paths. Ideally, only kernel/ and arch/*/ source files should reference the headers in these directories. If these headers must be used by a component, these include paths shall be manually added to the CMakeLists.txt file of the component. This is intended to discourage applications from including private kernel and arch headers either knowingly and unknowingly. - kernel/include/ (PRIVATE) This directory contains the private headers that provide private kernel definitions which should not be visible outside the kernel and arch source code. All public kernel definitions must be added to an appropriate header located under include/. - arch/*/include/ (PRIVATE) This directory contains the private headers that provide private architecture-specific definitions which should not be visible outside the arch and kernel source code. All public architecture- specific definitions must be added to an appropriate header located under include/arch/*/. - include/ AND include/sys/ (PUBLIC) This directory contains the public headers that provide public kernel definitions which can be referenced by both kernel and application code. - include/arch/*/ (PUBLIC) This directory contains the public headers that provide public architecture-specific definitions which can be referenced by both kernel and application code. 2. Split arch_interface.h into "kernel-to-arch interface" and "public arch interface" divisions. - kernel/include/kernel_arch_interface.h * provides private "kernel-to-arch interface" definition. * includes arch/*/include/kernel_arch_func.h to ensure that the interface function implementations are always available. * includes sys/arch_interface.h so that public arch interface definitions are automatically included when including this file. - arch/*/include/kernel_arch_func.h * provides architecture-specific "kernel-to-arch interface" implementation. * only the functions that will be used in kernel and arch source files are defined here. - include/sys/arch_interface.h * provides "public arch interface" definition. * includes include/arch/arch_inlines.h to ensure that the architecture-specific public inline interface function implementations are always available. - include/arch/arch_inlines.h * includes architecture-specific arch_inlines.h in include/arch/*/arch_inline.h. - include/arch/*/arch_inline.h * provides architecture-specific "public arch interface" inline function implementation. * supersedes include/sys/arch_inline.h. 3. Refactor kernel and the existing architecture implementations. - Remove circular dependency of kernel and arch headers. The following general rules should be observed: * Never include any private headers from public headers * Never include kernel_internal.h in kernel_arch_data.h * Always include kernel_arch_data.h from kernel_arch_func.h * Never include kernel.h from kernel_struct.h either directly or indirectly. Only add the kernel structures that must be referenced from public arch headers in this file. - Relocate syscall_handler.h to include/ so it can be used in the public code. This is necessary because many user-mode public codes reference the functions defined in this header. - Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is necessary to provide architecture-specific thread definition for 'struct k_thread' in kernel.h. - Remove any private header dependencies from public headers using the following methods: * If dependency is not required, simply omit * If dependency is required, - Relocate a portion of the required dependencies from the private header to an appropriate public header OR - Relocate the required private header to make it public. This commit supersedes #20047, addresses #19666, and fixes #3056. Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2019-10-24 17:08:21 +02:00
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
static uint64_t curr_tick;
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
static struct k_spinlock timeout_lock;
#define MAX_WAIT (IS_ENABLED(CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE) \
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
? K_TICKS_FOREVER : INT_MAX)
/* Cycles left to process in the currently-executing sys_clock_announce() */
static int announce_remaining;
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_sys_clock_hw_cycles_per_sec_runtime_get(void)
{
return z_impl_sys_clock_hw_cycles_per_sec_runtime_get();
}
#include <syscalls/sys_clock_hw_cycles_per_sec_runtime_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */
static struct _timeout *first(void)
{
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
}
static struct _timeout *next(struct _timeout *t)
{
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
}
static void remove_timeout(struct _timeout *t)
{
if (next(t) != NULL) {
next(t)->dticks += t->dticks;
}
sys_dlist_remove(&t->node);
}
static int32_t elapsed(void)
{
return announce_remaining == 0 ? sys_clock_elapsed() : 0U;
}
static int32_t next_timeout(void)
{
struct _timeout *to = first();
int32_t ticks_elapsed = elapsed();
int32_t ret = to == NULL ? MAX_WAIT
: CLAMP(to->dticks - ticks_elapsed, 0, MAX_WAIT);
#ifdef CONFIG_TIMESLICING
if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) {
ret = _current_cpu->slice_ticks;
}
#endif
return ret;
}
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
void z_add_timeout(struct _timeout *to, _timeout_func_t fn,
k_timeout_t timeout)
{
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
return;
}
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(to));
#endif
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
k_ticks_t ticks = timeout.ticks + 1;
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(ticks) >= 0) {
ticks = Z_TICK_ABS(timeout.ticks) - (curr_tick + elapsed());
}
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
__ASSERT(!sys_dnode_is_linked(&to->node), "");
to->fn = fn;
ticks = MAX(1, ticks);
LOCKED(&timeout_lock) {
struct _timeout *t;
to->dticks = ticks + elapsed();
for (t = first(); t != NULL; t = next(t)) {
if (t->dticks > to->dticks) {
t->dticks -= to->dticks;
sys_dlist_insert(&t->node, &to->node);
break;
}
to->dticks -= t->dticks;
}
if (t == NULL) {
sys_dlist_append(&timeout_list, &to->node);
}
if (to == first()) {
sched: timeout: Do not miss slice timeouts Time slices don't have a timeout struct associated and stored in timeout_list. Time slice timeout is direct programmed in the system clock and tracked in _current_cpu->slice_ticks. There is one issue where the time slice timeout can be missed because the system clock is re-programmed to a longer timeout. To this happens, it is only necessary that the timeout_list is empty (any timeout set) and a new timeout longer than remaining time slice is set. This is cause because z_add_timeout does not check for the slice ticks. The following example spots the issue: K_THREAD_STACK_DEFINE(tstack, STACK_SIZE); K_THREAD_STACK_ARRAY_DEFINE(tstacks, NUM_THREAD, STACK_SIZE); K_SEM_DEFINE(sema, 0, NUM_THREAD); static inline void spin_for_ms(int ms) { uint32_t t32 = k_uptime_get_32(); while (k_uptime_get_32() - t32 < ms) { } } static void thread_time_slice(void *p1, void *p2, void *p3) { printk("thread[%d] - Before spin\n", (int)(uintptr_t)p1); /* Spinning for longer than slice */ spin_for_ms(SLICE_SIZE + 20); /* The following print should not happen before another * same priority thread starts. */ printk("thread[%d] - After spinning\n", (int)(uintptr_t)p1); k_sem_give(&sema); } void main(void) { k_tid_t tid[NUM_THREAD]; struct k_thread t[NUM_THREAD]; uint32_t slice_ticks = k_ms_to_ticks_ceil32(SLICE_SIZE); int old_prio = k_thread_priority_get(k_current_get()); /* disable timeslice */ k_sched_time_slice_set(0, K_PRIO_PREEMPT(0)); for (int j = 0; j < 2; j++) { k_sem_reset(&sema); /* update priority for current thread */ k_thread_priority_set(k_current_get(), K_PRIO_PREEMPT(j)); /* synchronize to tick boundary */ k_usleep(1); /* create delayed threads with equal preemptive priority */ for (int i = 0; i < NUM_THREAD; i++) { tid[i] = k_thread_create(&t[i], tstacks[i], STACK_SIZE, thread_time_slice, (void *)i, NULL, NULL, K_PRIO_PREEMPT(j), 0, K_NO_WAIT); } /* enable time slice (and reset the counter!) */ k_sched_time_slice_set(SLICE_SIZE, K_PRIO_PREEMPT(0)); /* Spins for while to spend this thread time but not longer */ /* than a slice. This is important */ spin_for_ms(100); printk("before sleep\n"); /* relinquish CPU and wait for each thread to complete */ k_sleep(K_TICKS(slice_ticks * (NUM_THREAD + 1))); for (int i = 0; i < NUM_THREAD; i++) { k_sem_take(&sema, K_FOREVER); } /* test case teardown */ for (int i = 0; i < NUM_THREAD; i++) { k_thread_abort(tid[i]); } /* disable time slice */ k_sched_time_slice_set(0, K_PRIO_PREEMPT(0)); } k_thread_priority_set(k_current_get(), old_prio); } Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
2020-12-18 09:33:29 +01:00
#if CONFIG_TIMESLICING
/*
* This is not ideal, since it does not
* account the time elapsed since the the
* last announcement, and slice_ticks is based
* on that. It means the that time remaining for
* the next announcement can be lesser than
* slice_ticks.
*/
int32_t next_time = next_timeout();
if (next_time == 0 ||
_current_cpu->slice_ticks != next_time) {
sys_clock_set_timeout(next_time, false);
sched: timeout: Do not miss slice timeouts Time slices don't have a timeout struct associated and stored in timeout_list. Time slice timeout is direct programmed in the system clock and tracked in _current_cpu->slice_ticks. There is one issue where the time slice timeout can be missed because the system clock is re-programmed to a longer timeout. To this happens, it is only necessary that the timeout_list is empty (any timeout set) and a new timeout longer than remaining time slice is set. This is cause because z_add_timeout does not check for the slice ticks. The following example spots the issue: K_THREAD_STACK_DEFINE(tstack, STACK_SIZE); K_THREAD_STACK_ARRAY_DEFINE(tstacks, NUM_THREAD, STACK_SIZE); K_SEM_DEFINE(sema, 0, NUM_THREAD); static inline void spin_for_ms(int ms) { uint32_t t32 = k_uptime_get_32(); while (k_uptime_get_32() - t32 < ms) { } } static void thread_time_slice(void *p1, void *p2, void *p3) { printk("thread[%d] - Before spin\n", (int)(uintptr_t)p1); /* Spinning for longer than slice */ spin_for_ms(SLICE_SIZE + 20); /* The following print should not happen before another * same priority thread starts. */ printk("thread[%d] - After spinning\n", (int)(uintptr_t)p1); k_sem_give(&sema); } void main(void) { k_tid_t tid[NUM_THREAD]; struct k_thread t[NUM_THREAD]; uint32_t slice_ticks = k_ms_to_ticks_ceil32(SLICE_SIZE); int old_prio = k_thread_priority_get(k_current_get()); /* disable timeslice */ k_sched_time_slice_set(0, K_PRIO_PREEMPT(0)); for (int j = 0; j < 2; j++) { k_sem_reset(&sema); /* update priority for current thread */ k_thread_priority_set(k_current_get(), K_PRIO_PREEMPT(j)); /* synchronize to tick boundary */ k_usleep(1); /* create delayed threads with equal preemptive priority */ for (int i = 0; i < NUM_THREAD; i++) { tid[i] = k_thread_create(&t[i], tstacks[i], STACK_SIZE, thread_time_slice, (void *)i, NULL, NULL, K_PRIO_PREEMPT(j), 0, K_NO_WAIT); } /* enable time slice (and reset the counter!) */ k_sched_time_slice_set(SLICE_SIZE, K_PRIO_PREEMPT(0)); /* Spins for while to spend this thread time but not longer */ /* than a slice. This is important */ spin_for_ms(100); printk("before sleep\n"); /* relinquish CPU and wait for each thread to complete */ k_sleep(K_TICKS(slice_ticks * (NUM_THREAD + 1))); for (int i = 0; i < NUM_THREAD; i++) { k_sem_take(&sema, K_FOREVER); } /* test case teardown */ for (int i = 0; i < NUM_THREAD; i++) { k_thread_abort(tid[i]); } /* disable time slice */ k_sched_time_slice_set(0, K_PRIO_PREEMPT(0)); } k_thread_priority_set(k_current_get(), old_prio); } Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
2020-12-18 09:33:29 +01:00
}
#else
sys_clock_set_timeout(next_timeout(), false);
sched: timeout: Do not miss slice timeouts Time slices don't have a timeout struct associated and stored in timeout_list. Time slice timeout is direct programmed in the system clock and tracked in _current_cpu->slice_ticks. There is one issue where the time slice timeout can be missed because the system clock is re-programmed to a longer timeout. To this happens, it is only necessary that the timeout_list is empty (any timeout set) and a new timeout longer than remaining time slice is set. This is cause because z_add_timeout does not check for the slice ticks. The following example spots the issue: K_THREAD_STACK_DEFINE(tstack, STACK_SIZE); K_THREAD_STACK_ARRAY_DEFINE(tstacks, NUM_THREAD, STACK_SIZE); K_SEM_DEFINE(sema, 0, NUM_THREAD); static inline void spin_for_ms(int ms) { uint32_t t32 = k_uptime_get_32(); while (k_uptime_get_32() - t32 < ms) { } } static void thread_time_slice(void *p1, void *p2, void *p3) { printk("thread[%d] - Before spin\n", (int)(uintptr_t)p1); /* Spinning for longer than slice */ spin_for_ms(SLICE_SIZE + 20); /* The following print should not happen before another * same priority thread starts. */ printk("thread[%d] - After spinning\n", (int)(uintptr_t)p1); k_sem_give(&sema); } void main(void) { k_tid_t tid[NUM_THREAD]; struct k_thread t[NUM_THREAD]; uint32_t slice_ticks = k_ms_to_ticks_ceil32(SLICE_SIZE); int old_prio = k_thread_priority_get(k_current_get()); /* disable timeslice */ k_sched_time_slice_set(0, K_PRIO_PREEMPT(0)); for (int j = 0; j < 2; j++) { k_sem_reset(&sema); /* update priority for current thread */ k_thread_priority_set(k_current_get(), K_PRIO_PREEMPT(j)); /* synchronize to tick boundary */ k_usleep(1); /* create delayed threads with equal preemptive priority */ for (int i = 0; i < NUM_THREAD; i++) { tid[i] = k_thread_create(&t[i], tstacks[i], STACK_SIZE, thread_time_slice, (void *)i, NULL, NULL, K_PRIO_PREEMPT(j), 0, K_NO_WAIT); } /* enable time slice (and reset the counter!) */ k_sched_time_slice_set(SLICE_SIZE, K_PRIO_PREEMPT(0)); /* Spins for while to spend this thread time but not longer */ /* than a slice. This is important */ spin_for_ms(100); printk("before sleep\n"); /* relinquish CPU and wait for each thread to complete */ k_sleep(K_TICKS(slice_ticks * (NUM_THREAD + 1))); for (int i = 0; i < NUM_THREAD; i++) { k_sem_take(&sema, K_FOREVER); } /* test case teardown */ for (int i = 0; i < NUM_THREAD; i++) { k_thread_abort(tid[i]); } /* disable time slice */ k_sched_time_slice_set(0, K_PRIO_PREEMPT(0)); } k_thread_priority_set(k_current_get(), old_prio); } Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
2020-12-18 09:33:29 +01:00
#endif /* CONFIG_TIMESLICING */
}
}
}
int z_abort_timeout(struct _timeout *to)
{
int ret = -EINVAL;
LOCKED(&timeout_lock) {
if (sys_dnode_is_linked(&to->node)) {
remove_timeout(to);
ret = 0;
}
}
return ret;
}
/* must be locked */
static k_ticks_t timeout_rem(const struct _timeout *timeout)
{
k_ticks_t ticks = 0;
if (z_is_inactive_timeout(timeout)) {
return 0;
}
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
ticks += t->dticks;
if (timeout == t) {
break;
}
}
return ticks - elapsed();
}
k_ticks_t z_timeout_remaining(const struct _timeout *timeout)
{
k_ticks_t ticks = 0;
LOCKED(&timeout_lock) {
ticks = timeout_rem(timeout);
}
return ticks;
}
k_ticks_t z_timeout_expires(const struct _timeout *timeout)
{
k_ticks_t ticks = 0;
LOCKED(&timeout_lock) {
ticks = curr_tick + timeout_rem(timeout);
}
return ticks;
}
int32_t z_get_next_timeout_expiry(void)
{
int32_t ret = (int32_t) K_TICKS_FOREVER;
LOCKED(&timeout_lock) {
ret = next_timeout();
}
return ret;
}
void z_set_timeout_expiry(int32_t ticks, bool is_idle)
{
LOCKED(&timeout_lock) {
int next_to = next_timeout();
bool sooner = (next_to == K_TICKS_FOREVER)
|| (ticks <= next_to);
bool imminent = next_to <= 1;
/* Only set new timeouts when they are sooner than
* what we have. Also don't try to set a timeout when
* one is about to expire: drivers have internal logic
* that will bump the timeout to the "next" tick if
* it's not considered to be settable as directed.
* SMP can't use this optimization though: we don't
* know when context switches happen until interrupt
* exit and so can't get the timeslicing clamp folded
* in.
*/
if (!imminent && (sooner || IS_ENABLED(CONFIG_SMP))) {
sys_clock_set_timeout(MIN(ticks, next_to), is_idle);
}
}
}
void sys_clock_announce(int32_t ticks)
{
#ifdef CONFIG_TIMESLICING
z_time_slice(ticks);
#endif
k_spinlock_key_t key = k_spin_lock(&timeout_lock);
announce_remaining = ticks;
while (first() != NULL && first()->dticks <= announce_remaining) {
struct _timeout *t = first();
int dt = t->dticks;
curr_tick += dt;
announce_remaining -= dt;
t->dticks = 0;
remove_timeout(t);
k_spin_unlock(&timeout_lock, key);
t->fn(t);
key = k_spin_lock(&timeout_lock);
}
if (first() != NULL) {
first()->dticks -= announce_remaining;
}
curr_tick += announce_remaining;
announce_remaining = 0;
sys_clock_set_timeout(next_timeout(), false);
k_spin_unlock(&timeout_lock, key);
}
int64_t sys_clock_tick_get(void)
{
uint64_t t = 0U;
LOCKED(&timeout_lock) {
t = curr_tick + sys_clock_elapsed();
}
return t;
}
uint32_t sys_clock_tick_get_32(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return (uint32_t)sys_clock_tick_get();
#else
return (uint32_t)curr_tick;
#endif
}
int64_t z_impl_k_uptime_ticks(void)
{
return sys_clock_tick_get();
}
#ifdef CONFIG_USERSPACE
static inline int64_t z_vrfy_k_uptime_ticks(void)
{
return z_impl_k_uptime_ticks();
}
#include <syscalls/k_uptime_ticks_mrsh.c>
#endif
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
void z_impl_k_busy_wait(uint32_t usec_to_wait)
{
SYS_PORT_TRACING_FUNC_ENTER(k_thread, busy_wait, usec_to_wait);
if (usec_to_wait == 0U) {
SYS_PORT_TRACING_FUNC_EXIT(k_thread, busy_wait, usec_to_wait);
return;
}
#if !defined(CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT)
uint32_t start_cycles = k_cycle_get_32();
/* use 64-bit math to prevent overflow when multiplying */
uint32_t cycles_to_wait = (uint32_t)(
(uint64_t)usec_to_wait *
(uint64_t)sys_clock_hw_cycles_per_sec() /
(uint64_t)USEC_PER_SEC
);
for (;;) {
uint32_t current_cycles = k_cycle_get_32();
/* this handles the rollover on an unsigned 32-bit value */
if ((current_cycles - start_cycles) >= cycles_to_wait) {
break;
}
}
#else
arch_busy_wait(usec_to_wait);
#endif /* CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT */
SYS_PORT_TRACING_FUNC_EXIT(k_thread, busy_wait, usec_to_wait);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_busy_wait(uint32_t usec_to_wait)
{
z_impl_k_busy_wait(usec_to_wait);
}
#include <syscalls/k_busy_wait_mrsh.c>
#endif /* CONFIG_USERSPACE */
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
/* Returns the uptime expiration (relative to an unlocked "now"!) of a
* timeout object. When used correctly, this should be called once,
* synchronously with the user passing a new timeout value. It should
* not be used iteratively to adjust a timeout.
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
*/
uint64_t sys_clock_timeout_end_calc(k_timeout_t timeout)
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
{
k_ticks_t dt;
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
return UINT64_MAX;
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
return sys_clock_tick_get();
} else {
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
dt = timeout.ticks;
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(dt) >= 0) {
return Z_TICK_ABS(dt);
}
return sys_clock_tick_get() + MAX(1, dt);
}
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
}