zephyr/drivers/timer/sam0_rtc_timer.c

264 lines
6.1 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018 omSquare s.r.o.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Atmel SAM0 series RTC-based system timer
*
* This system timer implementation supports both tickless and ticking modes.
* In tickless mode, RTC counts continually in 32-bit mode and timeouts are
* scheduled using the RTC comparator. In ticking mode, RTC is configured to
* generate an interrupt every tick.
*/
#include <soc.h>
#include <clock_control.h>
#include <system_timer.h>
#include <sys_clock.h>
/* RTC registers. */
#define RTC0 ((RtcMode0 *) DT_RTC_SAM0_BASE_ADDRESS)
/* Number of sys timer cycles per on tick. */
#define CYCLES_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/* Maximum number of ticks. */
#define MAX_TICKS (UINT32_MAX / CYCLES_PER_TICK - 2)
#ifdef CONFIG_TICKLESS_KERNEL
/*
* Due to the nature of clock synchronization, reading from or writing to some
* RTC registers takes approximately six RTC_GCLK cycles. This constant defines
* a safe threshold for the comparator.
*/
#define TICK_THRESHOLD 7
BUILD_ASSERT_MSG(CYCLES_PER_TICK > TICK_THRESHOLD,
"CYCLES_PER_TICK must be greater than TICK_THRESHOLD for "
"tickless mode");
#else /* !CONFIG_TICKLESS_KERNEL */
/*
* For some reason, RTC does not generate interrupts when COMP == 0,
* MATCHCLR == 1 and PRESCALER == 0. So we need to check that CYCLES_PER_TICK
* is more than one.
*/
BUILD_ASSERT_MSG(CYCLES_PER_TICK > 1,
"CYCLES_PER_TICK must be greater than 1 for ticking mode");
#endif /* CONFIG_TICKLESS_KERNEL */
/* Helper macro to get the correct GCLK GEN based on configuration. */
#define GCLK_GEN(n) GCLK_EVAL(n)
#define GCLK_EVAL(n) GCLK_CLKCTRL_GEN_GCLK##n
/* Tick/cycle count of the last announce call. */
static volatile u32_t rtc_last;
#ifndef CONFIG_TICKLESS_KERNEL
/* Current tick count. */
static volatile u32_t rtc_counter;
/* Tick value of the next timeout. */
static volatile u32_t rtc_timeout;
#endif /* CONFIG_TICKLESS_KERNEL */
/*
* Waits for RTC bus synchronization.
*/
static inline void rtc_sync(void)
{
while (RTC0->STATUS.reg & RTC_STATUS_SYNCBUSY) {
/* Wait for bus synchronization... */
}
}
/*
* Reads RTC COUNT register. First a read request must be written to READREQ,
* then - when bus synchronization completes - the COUNT register is read and
* returned.
*/
static u32_t rtc_count(void)
{
RTC0->READREQ.reg = RTC_READREQ_RREQ;
rtc_sync();
return RTC0->COUNT.reg;
}
static void rtc_reset(void)
{
rtc_sync();
/* Disable interrupt. */
RTC0->INTENCLR.reg = RTC_MODE0_INTENCLR_MASK;
/* Clear interrupt flag. */
RTC0->INTFLAG.reg = RTC_MODE0_INTFLAG_MASK;
/* Disable RTC module. */
RTC0->CTRL.reg &= ~RTC_MODE0_CTRL_ENABLE;
rtc_sync();
/* Initiate software reset. */
RTC0->CTRL.reg |= RTC_MODE0_CTRL_SWRST;
}
static void rtc_isr(void *arg)
{
ARG_UNUSED(arg);
/* Read and clear the interrupt flag register. */
u16_t status = RTC0->INTFLAG.reg;
RTC0->INTFLAG.reg = status;
#ifdef CONFIG_TICKLESS_KERNEL
/* Read the current counter and announce the elapsed time in ticks. */
u32_t count = rtc_count();
if (count != rtc_last) {
u32_t ticks = (count - rtc_last) / CYCLES_PER_TICK;
z_clock_announce(ticks);
rtc_last += ticks * CYCLES_PER_TICK;
}
#else /* !CONFIG_TICKLESS_KERNEL */
if (status) {
/* RTC just ticked one more tick... */
if (++rtc_counter == rtc_timeout) {
z_clock_announce(rtc_counter - rtc_last);
rtc_last = rtc_counter;
}
} else {
/* ISR was invoked directly from z_clock_set_timeout. */
z_clock_announce(0);
}
#endif /* CONFIG_TICKLESS_KERNEL */
}
int z_clock_driver_init(struct device *device)
{
ARG_UNUSED(device);
/* Set up bus clock and GCLK generator. */
PM->APBAMASK.reg |= PM_APBAMASK_RTC;
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(RTC_GCLK_ID) | GCLK_CLKCTRL_CLKEN
| GCLK_GEN(DT_RTC_SAM0_CLOCK_GENERATOR);
while (GCLK->STATUS.bit.SYNCBUSY) {
/* Synchronize GCLK. */
}
/* Reset module to hardware defaults. */
rtc_reset();
rtc_last = 0;
/* Configure RTC with 32-bit mode, configured prescaler and MATCHCLR. */
u16_t ctrl = RTC_MODE0_CTRL_MODE(0) | RTC_MODE0_CTRL_PRESCALER(0);
#ifndef CONFIG_TICKLESS_KERNEL
ctrl |= RTC_MODE0_CTRL_MATCHCLR;
#endif
rtc_sync();
RTC0->CTRL.reg = ctrl;
#ifdef CONFIG_TICKLESS_KERNEL
/* Tickless kernel lets RTC count continually and ignores overflows. */
RTC0->INTENSET.reg = RTC_MODE0_INTENSET_CMP0;
#else
/* Non-tickless mode uses comparator together with MATCHCLR. */
rtc_sync();
RTC0->COMP[0].reg = CYCLES_PER_TICK;
RTC0->INTENSET.reg = RTC_MODE0_INTENSET_OVF;
rtc_counter = 0;
rtc_timeout = 0;
#endif
/* Enable RTC module. */
rtc_sync();
RTC0->CTRL.reg |= RTC_MODE0_CTRL_ENABLE;
/* Enable RTC interrupt. */
NVIC_ClearPendingIRQ(DT_RTC_SAM0_IRQ);
IRQ_CONNECT(DT_RTC_SAM0_IRQ, DT_RTC_SAM0_IRQ_PRIORITY, rtc_isr, 0, 0);
irq_enable(DT_RTC_SAM0_IRQ);
return 0;
}
void z_clock_set_timeout(s32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#ifdef CONFIG_TICKLESS_KERNEL
ticks = (ticks == K_FOREVER) ? MAX_TICKS : ticks;
ticks = MAX(MIN(ticks - 1, (s32_t) MAX_TICKS), 0);
/* Compute number of RTC cycles until the next timeout. */
u32_t count = rtc_count();
u32_t timeout = ticks * CYCLES_PER_TICK + count % CYCLES_PER_TICK;
/* Round to the nearest tick boundary. */
timeout = (timeout + CYCLES_PER_TICK - 1) / CYCLES_PER_TICK
* CYCLES_PER_TICK;
if (timeout < TICK_THRESHOLD) {
timeout += CYCLES_PER_TICK;
}
rtc_sync();
RTC0->COMP[0].reg = count + timeout;
#else /* !CONFIG_TICKLESS_KERNEL */
if (ticks == K_FOREVER) {
/* Disable comparator for K_FOREVER and other negative
* values.
*/
rtc_timeout = rtc_counter;
return;
}
if (ticks < 1) {
ticks = 1;
}
/* Avoid race condition between reading counter and ISR incrementing
* it.
*/
int key = irq_lock();
rtc_timeout = rtc_counter + ticks;
irq_unlock(key);
#endif /* CONFIG_TICKLESS_KERNEL */
}
u32_t z_clock_elapsed(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return (rtc_count() - rtc_last) / CYCLES_PER_TICK;
#else
return rtc_counter - rtc_last;
#endif
}
u32_t z_timer_cycle_get_32(void)
{
/* Just return the absolute value of RTC cycle counter. */
return rtc_count();
}