zephyr/drivers/mipi_dbi/mipi_dbi_spi.c

343 lines
9 KiB
C
Raw Normal View History

/*
* Copyright 2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT zephyr_mipi_dbi_spi
#include <zephyr/drivers/mipi_dbi.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(mipi_dbi_spi, CONFIG_MIPI_DBI_LOG_LEVEL);
struct mipi_dbi_spi_config {
/* SPI hardware used to send data */
const struct device *spi_dev;
/* Command/Data gpio */
const struct gpio_dt_spec cmd_data;
/* Reset GPIO */
const struct gpio_dt_spec reset;
};
struct mipi_dbi_spi_data {
/* Used for 3 wire mode */
uint16_t spi_byte;
struct k_mutex lock;
};
/* Expands to 1 if the node does not have the `write-only` property */
#define _WRITE_ONLY_ABSENT(n) (!DT_INST_PROP(n, write_only)) |
/* This macro will evaluate to 1 if any of the nodes with zephyr,mipi-dbi-spi
* lack a `write-only` property. The intention here is to allow the entire
* command_read function to be optimized out when it is not needed.
*/
#define MIPI_DBI_SPI_READ_REQUIRED DT_INST_FOREACH_STATUS_OKAY(_WRITE_ONLY_ABSENT) 0
uint32_t var = MIPI_DBI_SPI_READ_REQUIRED;
/* In Type C mode 1 MIPI BIT communication, the 9th bit of the word
* (first bit sent in each word) indicates if the word is a command or
* data. Typically 0 indicates a command and 1 indicates data, but some
* displays may vary.
*/
#define MIPI_DBI_DC_BIT BIT(9)
static int mipi_dbi_spi_write_helper(const struct device *dev,
const struct mipi_dbi_config *dbi_config,
bool cmd_present, uint8_t cmd,
const uint8_t *data_buf, size_t len)
{
const struct mipi_dbi_spi_config *config = dev->config;
struct mipi_dbi_spi_data *data = dev->data;
struct spi_buf buffer;
struct spi_buf_set buf_set = {
.buffers = &buffer,
.count = 1,
};
int ret = 0;
ret = k_mutex_lock(&data->lock, K_FOREVER);
if (ret < 0) {
return ret;
}
if (dbi_config->mode == MIPI_DBI_MODE_SPI_3WIRE &&
IS_ENABLED(CONFIG_MIPI_DBI_SPI_3WIRE)) {
struct spi_config tmp_cfg;
/* We have to emulate 3 wire mode by packing the data/command
* bit into the upper bit of the SPI transfer.
* switch SPI to 9 bit mode, and write the transfer
*/
memcpy(&tmp_cfg, &dbi_config->config, sizeof(tmp_cfg));
tmp_cfg.operation &= ~SPI_WORD_SIZE_MASK;
tmp_cfg.operation |= SPI_WORD_SET(9);
buffer.buf = &data->spi_byte;
buffer.len = 1;
/* Send command */
if (cmd_present) {
data->spi_byte = cmd;
ret = spi_write(config->spi_dev, &tmp_cfg, &buf_set);
if (ret < 0) {
goto out;
}
}
/* Write data, byte by byte */
for (size_t i = 0; i < len; i++) {
data->spi_byte = MIPI_DBI_DC_BIT | data_buf[i];
ret = spi_write(config->spi_dev, &tmp_cfg, &buf_set);
if (ret < 0) {
goto out;
}
}
} else if (dbi_config->mode == MIPI_DBI_MODE_SPI_4WIRE) {
/* 4 wire mode is much simpler. We just toggle the
* command/data GPIO to indicate if we are sending
* a command or data
*/
buffer.buf = &cmd;
buffer.len = sizeof(cmd);
if (cmd_present) {
/* Set CD pin low for command */
gpio_pin_set_dt(&config->cmd_data, 0);
ret = spi_write(config->spi_dev, &dbi_config->config,
&buf_set);
if (ret < 0) {
goto out;
}
}
if (len > 0) {
buffer.buf = (void *)data_buf;
buffer.len = len;
/* Set CD pin high for data */
gpio_pin_set_dt(&config->cmd_data, 1);
ret = spi_write(config->spi_dev, &dbi_config->config,
&buf_set);
if (ret < 0) {
goto out;
}
}
} else {
/* Otherwise, unsupported mode */
ret = -ENOTSUP;
}
out:
k_mutex_unlock(&data->lock);
return ret;
}
static int mipi_dbi_spi_command_write(const struct device *dev,
const struct mipi_dbi_config *dbi_config,
uint8_t cmd, const uint8_t *data_buf,
size_t len)
{
return mipi_dbi_spi_write_helper(dev, dbi_config, true, cmd,
data_buf, len);
}
static int mipi_dbi_spi_write_display(const struct device *dev,
const struct mipi_dbi_config *dbi_config,
const uint8_t *framebuf,
struct display_buffer_descriptor *desc,
enum display_pixel_format pixfmt)
{
ARG_UNUSED(pixfmt);
return mipi_dbi_spi_write_helper(dev, dbi_config, false, 0x0,
framebuf, desc->buf_size);
}
#if MIPI_DBI_SPI_READ_REQUIRED
static int mipi_dbi_spi_command_read(const struct device *dev,
const struct mipi_dbi_config *dbi_config,
uint8_t *cmds, size_t num_cmds,
uint8_t *response, size_t len)
{
const struct mipi_dbi_spi_config *config = dev->config;
struct mipi_dbi_spi_data *data = dev->data;
struct spi_buf buffer;
struct spi_buf_set buf_set = {
.buffers = &buffer,
.count = 1,
};
int ret = 0;
struct spi_config tmp_config;
ret = k_mutex_lock(&data->lock, K_FOREVER);
if (ret < 0) {
return ret;
}
memcpy(&tmp_config, &dbi_config->config, sizeof(tmp_config));
if (dbi_config->mode == MIPI_DBI_MODE_SPI_3WIRE &&
IS_ENABLED(CONFIG_MIPI_DBI_SPI_3WIRE)) {
/* We have to emulate 3 wire mode by packing the data/command
* bit into the upper bit of the SPI transfer.
* switch SPI to 9 bit mode, and write the transfer
*/
tmp_config.operation &= ~SPI_WORD_SIZE_MASK;
tmp_config.operation |= SPI_WORD_SET(9);
buffer.buf = &data->spi_byte;
buffer.len = 1;
/* Send each command */
for (size_t i = 0; i < num_cmds; i++) {
data->spi_byte = cmds[i];
ret = spi_write(config->spi_dev, &tmp_config, &buf_set);
if (ret < 0) {
goto out;
}
}
/* Now, we can switch to 8 bit mode, and read data */
buffer.buf = (void *)response;
buffer.len = len;
ret = spi_read(config->spi_dev, &dbi_config->config, &buf_set);
} else if (dbi_config->mode == MIPI_DBI_MODE_SPI_4WIRE) {
/* 4 wire mode is much simpler. We just toggle the
* command/data GPIO to indicate if we are sending
* a command or data. Note that since some SPI displays
* require CS to be held low for the entire read sequence,
* we set SPI_HOLD_ON_CS
*/
tmp_config.operation |= SPI_HOLD_ON_CS;
if (num_cmds > 0) {
buffer.buf = cmds;
buffer.len = num_cmds;
/* Set CD pin low for command */
gpio_pin_set_dt(&config->cmd_data, 0);
ret = spi_write(config->spi_dev, &tmp_config,
&buf_set);
if (ret < 0) {
goto out;
}
}
if (len > 0) {
/* Set CD pin high for data */
gpio_pin_set_dt(&config->cmd_data, 1);
buffer.buf = (void *)response;
buffer.len = len;
ret = spi_read(config->spi_dev, &tmp_config,
&buf_set);
if (ret < 0) {
goto out;
}
}
} else {
/* Otherwise, unsupported mode */
ret = -ENOTSUP;
}
out:
spi_release(config->spi_dev, &tmp_config);
k_mutex_unlock(&data->lock);
return ret;
}
#endif /* MIPI_DBI_SPI_READ_REQUIRED */
static inline bool mipi_dbi_has_pin(const struct gpio_dt_spec *spec)
{
return spec->port != NULL;
}
static int mipi_dbi_spi_reset(const struct device *dev, uint32_t delay)
{
const struct mipi_dbi_spi_config *config = dev->config;
int ret;
if (!mipi_dbi_has_pin(&config->reset)) {
return -ENOTSUP;
}
ret = gpio_pin_set_dt(&config->reset, 1);
if (ret < 0) {
return ret;
}
k_msleep(delay);
return gpio_pin_set_dt(&config->reset, 0);
}
static int mipi_dbi_spi_release(const struct device *dev,
const struct mipi_dbi_config *dbi_config)
{
const struct mipi_dbi_spi_config *config = dev->config;
return spi_release(config->spi_dev, &dbi_config->config);
}
static int mipi_dbi_spi_init(const struct device *dev)
{
const struct mipi_dbi_spi_config *config = dev->config;
struct mipi_dbi_spi_data *data = dev->data;
int ret;
if (!device_is_ready(config->spi_dev)) {
LOG_ERR("SPI device is not ready");
return -ENODEV;
}
if (mipi_dbi_has_pin(&config->cmd_data)) {
if (!gpio_is_ready_dt(&config->cmd_data)) {
return -ENODEV;
}
ret = gpio_pin_configure_dt(&config->cmd_data, GPIO_OUTPUT);
if (ret < 0) {
LOG_ERR("Could not configure command/data GPIO (%d)", ret);
return ret;
}
}
if (mipi_dbi_has_pin(&config->reset)) {
if (!gpio_is_ready_dt(&config->reset)) {
return -ENODEV;
}
ret = gpio_pin_configure_dt(&config->reset, GPIO_OUTPUT_INACTIVE);
if (ret < 0) {
LOG_ERR("Could not configure reset GPIO (%d)", ret);
return ret;
}
}
k_mutex_init(&data->lock);
return 0;
}
static struct mipi_dbi_driver_api mipi_dbi_spi_driver_api = {
.reset = mipi_dbi_spi_reset,
.command_write = mipi_dbi_spi_command_write,
.write_display = mipi_dbi_spi_write_display,
.release = mipi_dbi_spi_release,
#if MIPI_DBI_SPI_READ_REQUIRED
.command_read = mipi_dbi_spi_command_read,
#endif
};
#define MIPI_DBI_SPI_INIT(n) \
static const struct mipi_dbi_spi_config \
mipi_dbi_spi_config_##n = { \
.spi_dev = DEVICE_DT_GET( \
DT_INST_PHANDLE(n, spi_dev)), \
.cmd_data = GPIO_DT_SPEC_INST_GET_OR(n, dc_gpios, {}), \
.reset = GPIO_DT_SPEC_INST_GET_OR(n, reset_gpios, {}), \
}; \
static struct mipi_dbi_spi_data mipi_dbi_spi_data_##n; \
\
DEVICE_DT_INST_DEFINE(n, mipi_dbi_spi_init, NULL, \
&mipi_dbi_spi_data_##n, \
&mipi_dbi_spi_config_##n, \
POST_KERNEL, \
CONFIG_MIPI_DBI_INIT_PRIORITY, \
&mipi_dbi_spi_driver_api);
DT_INST_FOREACH_STATUS_OKAY(MIPI_DBI_SPI_INIT)