zephyr/drivers/timer/hpet.c

232 lines
5.7 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT intel_hpet
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <irq.h>
#include <linker/sections.h>
#include <dt-bindings/interrupt-controller/intel-ioapic.h>
DEVICE_MMIO_TOPLEVEL_STATIC(hpet_regs, DT_DRV_INST(0));
#define HPET_REG32(off) (*(volatile uint32_t *)(long) \
(DEVICE_MMIO_TOPLEVEL_GET(hpet_regs) + (off)))
#define CLK_PERIOD_REG HPET_REG32(0x04) /* High dword of caps reg */
#define GENERAL_CONF_REG HPET_REG32(0x10)
#define INTR_STATUS_REG HPET_REG32(0x20)
#define MAIN_COUNTER_REG HPET_REG32(0xf0)
#define TIMER0_CONF_REG HPET_REG32(0x100)
#define TIMER0_COMPARATOR_REG HPET_REG32(0x108)
/* GENERAL_CONF_REG bits */
#define GCONF_ENABLE BIT(0)
#define GCONF_LR BIT(1) /* legacy interrupt routing, disables PIT */
/* INTR_STATUS_REG bits */
#define TIMER0_INT_STS BIT(0)
/* TIMERn_CONF_REG bits */
#define TCONF_INT_LEVEL BIT(1)
#define TCONF_INT_ENABLE BIT(2)
#define TCONF_PERIODIC BIT(3)
#define TCONF_VAL_SET BIT(6)
#define TCONF_MODE32 BIT(8)
#define TCONF_FSB_EN BIT(14) /* FSB interrupt delivery enable */
#ifndef HPET_COUNTER_CLK_PERIOD
/* COUNTER_CLK_PERIOD (CLK_PERIOD_REG) is in femtoseconds (1e-15 sec) */
#define HPET_COUNTER_CLK_PERIOD (1000000000000000ULL)
#endif
#ifndef HPET_CMP_MIN_DELAY
/* Minimal delay for comparator before the next timer event */
#define HPET_CMP_MIN_DELAY (1000)
#endif
static __pinned_bss struct k_spinlock lock;
static __pinned_bss unsigned int max_ticks;
static __pinned_bss unsigned int cyc_per_tick;
static __pinned_bss unsigned int last_count;
__isr
isr: Normalize usage of device instance through ISR The goal of this patch is to replace the 'void *' parameter by 'struct device *' if they use such variable or just 'const void *' on all relevant ISRs This will avoid not-so-nice const qualifier tweaks when device instances will be constant. Note that only the ISR passed to IRQ_CONNECT are of interest here. In order to do so, the script fix_isr.py below is necessary: from pathlib import Path import subprocess import pickle import mmap import sys import re import os cocci_template = """ @r_fix_isr_0 @ type ret_type; identifier P; identifier D; @@ -ret_type <!fn!>(void *P) +ret_type <!fn!>(const struct device *P) { ... ( const struct device *D = (const struct device *)P; | const struct device *D = P; ) ... } @r_fix_isr_1 @ type ret_type; identifier P; identifier D; @@ -ret_type <!fn!>(void *P) +ret_type <!fn!>(const struct device *P) { ... const struct device *D; ... ( D = (const struct device *)P; | D = P; ) ... } @r_fix_isr_2 @ type ret_type; identifier A; @@ -ret_type <!fn!>(void *A) +ret_type <!fn!>(const void *A) { ... } @r_fix_isr_3 @ const struct device *D; @@ -<!fn!>((void *)D); +<!fn!>(D); @r_fix_isr_4 @ type ret_type; identifier D; identifier P; @@ -ret_type <!fn!>(const struct device *P) +ret_type <!fn!>(const struct device *D) { ... ( -const struct device *D = (const struct device *)P; | -const struct device *D = P; ) ... } @r_fix_isr_5 @ type ret_type; identifier D; identifier P; @@ -ret_type <!fn!>(const struct device *P) +ret_type <!fn!>(const struct device *D) { ... -const struct device *D; ... ( -D = (const struct device *)P; | -D = P; ) ... } """ def find_isr(fn): db = [] data = None start = 0 try: with open(fn, 'r+') as f: data = str(mmap.mmap(f.fileno(), 0).read()) except Exception as e: return db while True: isr = "" irq = data.find('IRQ_CONNECT', start) while irq > -1: p = 1 arg = 1 p_o = data.find('(', irq) if p_o < 0: irq = -1 break; pos = p_o + 1 while p > 0: if data[pos] == ')': p -= 1 elif data[pos] == '(': p += 1 elif data[pos] == ',' and p == 1: arg += 1 if arg == 3: isr += data[pos] pos += 1 isr = isr.strip(',\\n\\t ') if isr not in db and len(isr) > 0: db.append(isr) start = pos break if irq < 0: break return db def patch_isr(fn, isr_list): if len(isr_list) <= 0: return for isr in isr_list: tmplt = cocci_template.replace('<!fn!>', isr) with open('/tmp/isr_fix.cocci', 'w') as f: f.write(tmplt) cmd = ['spatch', '--sp-file', '/tmp/isr_fix.cocci', '--in-place', fn] subprocess.run(cmd) def process_files(path): if path.is_file() and path.suffix in ['.h', '.c']: p = str(path.parent) + '/' + path.name isr_list = find_isr(p) patch_isr(p, isr_list) elif path.is_dir(): for p in path.iterdir(): process_files(p) if len(sys.argv) < 2: print("You need to provide a dir/file path") sys.exit(1) process_files(Path(sys.argv[1])) And is run: ./fix_isr.py <zephyr root directory> Finally, some files needed manual fixes such. Fixes #27399 Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
2020-06-17 14:58:56 +02:00
static void hpet_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t now = MAIN_COUNTER_REG;
#if ((DT_INST_IRQ(0, sense) & IRQ_TYPE_LEVEL) == IRQ_TYPE_LEVEL)
/*
* Clear interrupt only if level trigger is selected.
* When edge trigger is selected, spec says only 0 can
* be written.
*/
INTR_STATUS_REG = TIMER0_INT_STS;
#endif
if (IS_ENABLED(CONFIG_SMP) &&
IS_ENABLED(CONFIG_QEMU_TARGET)) {
/* Qemu in SMP mode has observed the clock going
* "backwards" relative to interrupts already received
* on the other CPU, despite the HPET being
* theoretically a global device.
*/
int32_t diff = (int32_t)(now - last_count);
if (last_count && diff < 0) {
now = last_count;
}
}
uint32_t dticks = (now - last_count) / cyc_per_tick;
last_count += dticks * cyc_per_tick;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
uint32_t next = last_count + cyc_per_tick;
if ((int32_t)(next - now) < HPET_CMP_MIN_DELAY) {
next += cyc_per_tick;
}
TIMER0_COMPARATOR_REG = next;
}
k_spin_unlock(&lock, key);
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : 1);
}
__pinned_func
static void set_timer0_irq(unsigned int irq)
{
/* 5-bit IRQ field starting at bit 9 */
uint32_t val = (TIMER0_CONF_REG & ~(0x1f << 9)) | ((irq & 0x1f) << 9);
#if ((DT_INST_IRQ(0, sense) & IRQ_TYPE_LEVEL) == IRQ_TYPE_LEVEL)
/* Level trigger */
val |= TCONF_INT_LEVEL;
#endif
TIMER0_CONF_REG = val;
}
__boot_func
int sys_clock_driver_init(const struct device *dev)
{
extern int z_clock_hw_cycles_per_sec;
uint32_t hz;
ARG_UNUSED(dev);
DEVICE_MMIO_TOPLEVEL_MAP(hpet_regs, K_MEM_CACHE_NONE);
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
hpet_isr, 0, DT_INST_IRQ(0, sense));
set_timer0_irq(DT_INST_IRQN(0));
irq_enable(DT_INST_IRQN(0));
hz = (uint32_t)(HPET_COUNTER_CLK_PERIOD / CLK_PERIOD_REG);
z_clock_hw_cycles_per_sec = hz;
cyc_per_tick = hz / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
/* Note: we set the legacy routing bit, because otherwise
* nothing in Zephyr disables the PIT which then fires
* interrupts into the same IRQ. But that means we're then
* forced to use IRQ2 contra the way the kconfig IRQ selection
* is supposed to work. Should fix this.
*/
GENERAL_CONF_REG |= GCONF_LR | GCONF_ENABLE;
TIMER0_CONF_REG &= ~TCONF_PERIODIC;
TIMER0_CONF_REG &= ~TCONF_FSB_EN;
TIMER0_CONF_REG |= TCONF_MODE32;
max_ticks = (0x7fffffff - cyc_per_tick) / cyc_per_tick;
last_count = MAIN_COUNTER_REG;
TIMER0_CONF_REG |= TCONF_INT_ENABLE;
TIMER0_COMPARATOR_REG = MAIN_COUNTER_REG + cyc_per_tick;
return 0;
}
__boot_func
void smp_timer_init(void)
{
/* Noop, the HPET is a single system-wide device and it's
* configured to deliver interrupts to every CPU, so there's
* nothing to do at initialization on auxiliary CPUs.
*/
}
__pinned_func
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#if defined(CONFIG_TICKLESS_KERNEL)
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
if (ticks == K_TICKS_FOREVER && idle) {
GENERAL_CONF_REG &= ~GCONF_ENABLE;
return;
}
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
ticks = ticks == K_TICKS_FOREVER ? max_ticks : ticks;
ticks = CLAMP(ticks - 1, 0, (int32_t)max_ticks);
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t now = MAIN_COUNTER_REG, cyc, adj;
uint32_t max_cyc = max_ticks * cyc_per_tick;
/* Round up to next tick boundary. */
cyc = ticks * cyc_per_tick;
adj = (now - last_count) + (cyc_per_tick - 1);
if (cyc <= max_cyc - adj) {
cyc += adj;
} else {
cyc = max_cyc;
}
cyc = (cyc / cyc_per_tick) * cyc_per_tick;
cyc += last_count;
if ((cyc - now) < HPET_CMP_MIN_DELAY) {
cyc += cyc_per_tick;
}
TIMER0_COMPARATOR_REG = cyc;
k_spin_unlock(&lock, key);
#endif
}
__pinned_func
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = (MAIN_COUNTER_REG - last_count) / cyc_per_tick;
k_spin_unlock(&lock, key);
return ret;
}
__pinned_func
uint32_t sys_clock_cycle_get_32(void)
{
return MAIN_COUNTER_REG;
}
__pinned_func
void sys_clock_idle_exit(void)
{
GENERAL_CONF_REG |= GCONF_ENABLE;
}