kernel: add page frame management

Initialize the page frame ontology at boot and update it
when we do memory mappings.

Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This commit is contained in:
Andrew Boie 2020-12-09 12:18:40 -08:00 committed by Anas Nashif
parent 9d2ebfff58
commit 2ca5fb7e06
6 changed files with 579 additions and 99 deletions

View file

@ -9,14 +9,16 @@
#define ROMABLE_REGION RAM
#define RAMABLE_REGION RAM
#define MMU_PAGE_ALIGN . = ALIGN(CONFIG_MMU_PAGE_SIZE);
/* Used to align areas with separate memory permission characteristics
* so that the page permissions can be set in the MMU. Without this,
* the kernel is just one blob with the same RWX permissions on all RAM
*/
#ifdef CONFIG_SRAM_REGION_PERMISSIONS
#define MMU_PAGE_ALIGN . = ALIGN(CONFIG_MMU_PAGE_SIZE);
#define MMU_PAGE_ALIGN_PERM MMU_PAGE_ALIGN
#else
#define MMU_PAGE_ALIGN
#define MMU_PAGE_ALIGN_PERM
#endif
ENTRY(CONFIG_KERNEL_ENTRY)
@ -34,12 +36,12 @@ SECTIONS
_locore_start = .;
*(.locore)
*(.locore.*)
MMU_PAGE_ALIGN
MMU_PAGE_ALIGN_PERM
_locore_end = .;
_lorodata_start = .;
*(.lorodata)
MMU_PAGE_ALIGN
MMU_PAGE_ALIGN_PERM
_lodata_start = .;
*(.lodata)
@ -54,7 +56,7 @@ SECTIONS
* On x86-64 the IDT is in rodata and doesn't need to be in the
* trampoline page.
*/
MMU_PAGE_ALIGN
MMU_PAGE_ALIGN_PERM
z_shared_kernel_page_start = .;
#endif /* CONFIG_X86_KPTI */
@ -63,7 +65,7 @@ SECTIONS
#ifdef CONFIG_X86_KPTI
*(.trampolines)
MMU_PAGE_ALIGN
MMU_PAGE_ALIGN_PERM
z_shared_kernel_page_end = .;
ASSERT(z_shared_kernel_page_end - z_shared_kernel_page_start == 4096,
@ -93,7 +95,7 @@ SECTIONS
#include <linker/kobject-text.ld>
MMU_PAGE_ALIGN
MMU_PAGE_ALIGN_PERM
} GROUP_LINK_IN(ROMABLE_REGION)
_image_text_end = .;
@ -123,15 +125,15 @@ SECTIONS
#include <linker/cplusplus-rom.ld>
MMU_PAGE_ALIGN
MMU_PAGE_ALIGN_PERM
_image_rodata_end = .;
_image_rodata_size = _image_rodata_end - _image_rodata_start;
_image_rom_end = .;
#ifdef CONFIG_USERSPACE
/* APP SHARED MEMORY REGION */
#define SMEM_PARTITION_ALIGN(size) MMU_PAGE_ALIGN
#define APP_SHARED_ALIGN MMU_PAGE_ALIGN
#define SMEM_PARTITION_ALIGN(size) MMU_PAGE_ALIGN_PERM
#define APP_SHARED_ALIGN MMU_PAGE_ALIGN_PERM
#include <app_smem.ld>
@ -148,7 +150,7 @@ SECTIONS
SECTION_PROLOGUE(_BSS_SECTION_NAME, (NOLOAD), ALIGN(16))
{
MMU_PAGE_ALIGN
MMU_PAGE_ALIGN_PERM
#ifndef CONFIG_USERSPACE
_image_ram_start = .;
#endif
@ -180,7 +182,7 @@ SECTIONS
/* Must be last in RAM */
#include <linker/kobject.ld>
. = ALIGN(CONFIG_MMU_PAGE_SIZE);
MMU_PAGE_ALIGN
_image_ram_end = .;
z_mapped_end = .;
_end = .;

View file

@ -51,9 +51,10 @@ extern "C" {
/**
* Map a physical memory region into the kernel's virtual address space
*
* Given a physical address and a size, return a linear address
* representing the base of where the physical region is mapped in
* the virtual address space for the Zephyr kernel.
* This function is intended for mapping memory-mapped I/O regions into
* the virtual address space. Given a physical address and a size, return a
* linear address representing the base of where the physical region is mapped
* in the virtual address space for the Zephyr kernel.
*
* This function alters the active page tables in the area reserved
* for the kernel. This function will choose the virtual address
@ -70,12 +71,18 @@ extern "C" {
* with user access and code execution forbidden. This policy is changed
* by passing K_MEM_CACHE_* and K_MEM_PERM_* macros into the 'flags' parameter.
*
* If there is insufficient virtual address space for the mapping, or
* bad flags are passed in, or if additional memory is needed to update
* page tables that is not available, this will generate a kernel panic.
* If there is insufficient virtual address space for the mapping this will
* generate a kernel panic.
*
* This API is only available if CONFIG_MMU is enabled.
*
* It is highly discouraged to use this function to map system RAM page
* frames. It may conflict with anonymous memory mappings and demand paging
* and produce undefined behavior. Do not use this for RAM unless you know
* exactly what you are doing. If you need a chunk of memory, use k_mem_map().
* If you need a contiguous buffer of physical memory, statically declare it
* and pin it at build time, it will be mapped when the system boots.
*
* This API is part of infrastructure still under development and may
* change.
*

View file

@ -192,6 +192,11 @@ void z_thread_mark_switched_out(void);
#endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */
/* Init hook for page frame management, invoked immediately upon entry of
* main thread, before POST_KERNEL tasks
*/
void z_mem_manage_init(void);
#ifdef __cplusplus
}
#endif

198
kernel/include/mmu.h Normal file
View file

@ -0,0 +1,198 @@
/*
* Copyright (c) 2020 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef KERNEL_INCLUDE_MMU_H
#define KERNEL_INCLUDE_MMU_H
#ifdef CONFIG_MMU
#include <stdint.h>
#include <sys/slist.h>
#include <sys/__assert.h>
#include <sys/util.h>
#include <sys/mem_manage.h>
#include <linker/linker-defs.h>
/*
* At present, page frame management is only done for main system RAM,
* and we generate paging structures based on CONFIG_SRAM_BASE_ADDRESS
* and CONFIG_SRAM_SIZE.
*
* If we have other RAM regions (DCCM, etc) these typically have special
* properties and shouldn't be used generically for demand paging or
* anonymous mappings. We don't currently maintain an ontology of these in the
* core kernel.
*/
#define Z_PHYS_RAM_START ((uintptr_t)CONFIG_SRAM_BASE_ADDRESS)
#define Z_PHYS_RAM_SIZE ((size_t)KB(CONFIG_SRAM_SIZE))
#define Z_PHYS_RAM_END (Z_PHYS_RAM_START + Z_PHYS_RAM_SIZE)
#define Z_NUM_PAGE_FRAMES (Z_PHYS_RAM_SIZE / CONFIG_MMU_PAGE_SIZE)
/** End virtual address of virtual address space */
#define Z_VIRT_RAM_START ((uint8_t *)CONFIG_KERNEL_VM_BASE)
#define Z_VIRT_RAM_SIZE ((size_t)CONFIG_KERNEL_VM_SIZE)
#define Z_VIRT_RAM_END (Z_VIRT_RAM_START + Z_VIRT_RAM_SIZE)
/* Boot-time virtual location of the kernel image. */
#define Z_KERNEL_VIRT_START ((uint8_t *)(&z_mapped_start))
#define Z_KERNEL_VIRT_END ((uint8_t *)(&z_mapped_end))
#define Z_KERNEL_VIRT_SIZE ((size_t)(&z_mapped_size))
/*
* Macros and data structures for physical page frame accounting,
* APIs for use by eviction and backing store algorithms. This code
* is otherwise not application-facing.
*/
/*
* z_page_frame flags bits
*/
/** This page contains critical kernel data and will never be swapped */
#define Z_PAGE_FRAME_PINNED BIT(0)
/** This physical page is reserved by hardware; we will never use it */
#define Z_PAGE_FRAME_RESERVED BIT(1)
/**
* This physical page is mapped to some virtual memory address
*
* Currently, we just support one mapping per page frame. If a page frame
* is mapped to multiple virtual pages then it must be pinned.
*/
#define Z_PAGE_FRAME_MAPPED BIT(2)
/**
* This page frame is currently involved in a page-in/out operation
*/
#define Z_PAGE_FRAME_BUSY BIT(3)
/**
* Data structure for physical page frames
*
* An array of these is instantiated, one element per physical RAM page.
* Hence it's necessary to constrain its size as much as possible.
*/
struct z_page_frame {
union {
/* If mapped, virtual address this page is mapped to */
void *addr;
/* If unmapped and available, free pages list membership. */
sys_snode_t node;
};
/* Z_PAGE_FRAME_* flags */
uint8_t flags;
/* TODO: Backing store and eviction algorithms may both need to
* introduce custom members for accounting purposes. Come up with
* a layer of abstraction for this. They may also want additional
* flags bits which shouldn't clobber each other. At all costs
* the total size of struct z_page_frame must be minimized.
*/
} __packed;
static inline bool z_page_frame_is_pinned(struct z_page_frame *pf)
{
return (pf->flags & Z_PAGE_FRAME_PINNED) != 0;
}
static inline bool z_page_frame_is_reserved(struct z_page_frame *pf)
{
return (pf->flags & Z_PAGE_FRAME_RESERVED) != 0;
}
static inline bool z_page_frame_is_mapped(struct z_page_frame *pf)
{
return (pf->flags & Z_PAGE_FRAME_MAPPED) != 0;
}
static inline bool z_page_frame_is_busy(struct z_page_frame *pf)
{
return (pf->flags & Z_PAGE_FRAME_BUSY) != 0;
}
static inline bool z_page_frame_is_evictable(struct z_page_frame *pf)
{
return (!z_page_frame_is_reserved(pf) && z_page_frame_is_mapped(pf) &&
!z_page_frame_is_pinned(pf) && !z_page_frame_is_busy(pf));
}
/* If true, page is not being used for anything, is not reserved, is a member
* of some free pages list, isn't busy, and may be mapped in memory
*/
static inline bool z_page_frame_is_available(struct z_page_frame *page)
{
return page->flags == 0;
}
static inline void z_assert_phys_aligned(uintptr_t phys)
{
__ASSERT(phys % CONFIG_MMU_PAGE_SIZE == 0,
"physical address 0x%lx is not page-aligned", phys);
(void)phys;
}
/* Reserved pages */
#define Z_VM_RESERVED 0
extern struct z_page_frame z_page_frames[Z_NUM_PAGE_FRAMES];
static inline uintptr_t z_page_frame_to_phys(struct z_page_frame *pf)
{
return (uintptr_t)((pf - z_page_frames) * CONFIG_MMU_PAGE_SIZE) +
Z_PHYS_RAM_START;
}
/* Presumes there is but one mapping in the virtual address space */
static inline void *z_page_frame_to_virt(struct z_page_frame *pf)
{
return pf->addr;
}
static inline bool z_is_page_frame(uintptr_t phys)
{
z_assert_phys_aligned(phys);
return (phys >= Z_PHYS_RAM_START) && (phys < Z_PHYS_RAM_END);
}
static inline struct z_page_frame *z_phys_to_page_frame(uintptr_t phys)
{
__ASSERT(z_is_page_frame(phys),
"0x%lx not an SRAM physical address", phys);
return &z_page_frames[(phys - Z_PHYS_RAM_START) /
CONFIG_MMU_PAGE_SIZE];
}
static inline void z_mem_assert_virtual_region(uint8_t *addr, size_t size)
{
__ASSERT((uintptr_t)addr % CONFIG_MMU_PAGE_SIZE == 0,
"unaligned addr %p", addr);
__ASSERT(size % CONFIG_MMU_PAGE_SIZE == 0,
"unaligned size %zu", size);
__ASSERT(addr + size > addr,
"region %p size %zu zero or wraps around", addr, size);
__ASSERT(addr >= Z_VIRT_RAM_START && addr + size < Z_VIRT_RAM_END,
"invalid virtual address region %p (%zu)", addr, size);
}
/* Debug function, pretty-print page frame information for all frames
* concisely to printk.
*/
void z_page_frames_dump(void);
/* Number of free page frames. This information may go stale immediately */
extern size_t z_free_page_count;
/* Convenience macro for iterating over all page frames */
#define Z_PAGE_FRAME_FOREACH(_phys, _pageframe) \
for (_phys = Z_PHYS_RAM_START, _pageframe = z_page_frames; \
_phys < Z_PHYS_RAM_END; \
_phys += CONFIG_MMU_PAGE_SIZE, _pageframe++)
#endif /* CONFIG_MMU */
#endif /* KERNEL_INCLUDE_MMU_H */

View file

@ -136,6 +136,14 @@ static void bg_thread_main(void *unused1, void *unused2, void *unused3)
ARG_UNUSED(unused2);
ARG_UNUSED(unused3);
#ifdef CONFIG_MMU
/* Invoked here such that backing store or eviction algorithms may
* initialize kernel objects, and that all POST_KERNEL and later tasks
* may perform memory management tasks (except for z_phys_map() which
* is allowed at any time)
*/
z_mem_manage_init();
#endif /* CONFIG_MMU */
z_sys_post_kernel = true;
z_sys_init_run_level(_SYS_INIT_LEVEL_POST_KERNEL);

View file

@ -9,28 +9,144 @@
#include <stdint.h>
#include <kernel_arch_interface.h>
#include <spinlock.h>
#include <mmu.h>
#include <init.h>
#include <kernel_internal.h>
#include <linker/linker-defs.h>
#include <logging/log.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
/*
* General terminology:
* - A page frame is a page-sized physical memory region in RAM. It is a
* container where a data page may be placed. It is always referred to by
* physical address. We have a convention of using uintptr_t for physical
* addresses. We instantiate a struct z_page_frame to store metadata for
* every page frame.
*
* - A data page is a page-sized region of data. It may exist in a page frame,
* or be paged out to some backing store. Its location can always be looked
* up in the CPU's page tables (or equivalent) by virtual address.
* The data type will always be void * or in some cases uint8_t * when we
* want to do pointer arithmetic.
*/
/* Spinlock to protect any globals in this file and serialize page table
* updates in arch code
*/
static struct k_spinlock mm_lock;
struct k_spinlock z_mm_lock;
/*
* Overall virtual memory map. When the kernel starts, it is expected that all
* memory regions are mapped into one large virtual region at the beginning of
* CONFIG_KERNEL_VM_BASE. Unused virtual memory up to the limit noted by
* CONFIG_KERNEL_VM_SIZE may be used for runtime memory mappings.
* General page frame management
*/
/* Database of all RAM page frames */
struct z_page_frame z_page_frames[Z_NUM_PAGE_FRAMES];
#if __ASSERT_ON
/* Indicator that z_page_frames has been initialized, many of these APIs do
* not work before POST_KERNEL
*/
static bool page_frames_initialized;
#endif
/* Add colors to page table dumps to indicate mapping type */
#define COLOR_PAGE_FRAMES 1
#if COLOR_PAGE_FRAMES
#define ANSI_DEFAULT "\x1B[0m"
#define ANSI_RED "\x1B[1;31m"
#define ANSI_GREEN "\x1B[1;32m"
#define ANSI_YELLOW "\x1B[1;33m"
#define ANSI_BLUE "\x1B[1;34m"
#define ANSI_MAGENTA "\x1B[1;35m"
#define ANSI_CYAN "\x1B[1;36m"
#define ANSI_GREY "\x1B[1;90m"
#define COLOR(x) printk(_CONCAT(ANSI_, x))
#else
#define COLOR(x) do { } while (0)
#endif
static void page_frame_dump(struct z_page_frame *pf)
{
if (z_page_frame_is_reserved(pf)) {
COLOR(CYAN);
printk("R");
} else if (z_page_frame_is_busy(pf)) {
COLOR(MAGENTA);
printk("B");
} else if (z_page_frame_is_pinned(pf)) {
COLOR(YELLOW);
printk("P");
} else if (z_page_frame_is_available(pf)) {
COLOR(GREY);
printk(".");
} else if (z_page_frame_is_mapped(pf)) {
COLOR(DEFAULT);
printk("M");
} else {
COLOR(RED);
printk("?");
}
}
void z_page_frames_dump(void)
{
int column = 0;
__ASSERT(page_frames_initialized, "%s called too early", __func__);
printk("Physical memory from 0x%lx to 0x%lx\n",
Z_PHYS_RAM_START, Z_PHYS_RAM_END);
for (int i = 0; i < Z_NUM_PAGE_FRAMES; i++) {
struct z_page_frame *pf = &z_page_frames[i];
page_frame_dump(pf);
column++;
if (column == 64) {
column = 0;
printk("\n");
}
}
COLOR(DEFAULT);
if (column != 0) {
printk("\n");
}
}
#define VIRT_FOREACH(_base, _size, _pos) \
for (_pos = _base; \
_pos < ((uint8_t *)_base + _size); _pos += CONFIG_MMU_PAGE_SIZE)
#define PHYS_FOREACH(_base, _size, _pos) \
for (_pos = _base; \
_pos < ((uintptr_t)_base + _size); _pos += CONFIG_MMU_PAGE_SIZE)
/*
* Virtual address space management
*
* +--------------+ <- CONFIG_KERNEL_VM_BASE
* Call all of these functions with z_mm_lock held.
*
* Overall virtual memory map: When the kernel starts, it resides in
* virtual memory in the region Z_BOOT_KERNEL_VIRT_START to
* Z_BOOT_KERNEL_VIRT_END. Unused virtual memory past this, up to the limit
* noted by CONFIG_KERNEL_VM_SIZE may be used for runtime memory mappings.
*
* +--------------+ <- Z_VIRT_ADDR_START
* | Undefined VM | <- May contain ancillary regions like x86_64's locore
* +--------------+ <- Z_BOOT_KERNEL_VIRT_START (often == Z_VIRT_ADDR_START)
* | Mapping for |
* | all RAM |
* | main kernel |
* | image |
* | |
* | |
* +--------------+ <- Z_BOOT_KERNEL_VIRT_END
* | |
* | |
* +--------------+ <- CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_RAM_SIZE
* | Available | also the mapping limit as mappings grown downward
* | virtual mem |
* | Unused, |
* | Available VM |
* | |
* |..............| <- mapping_pos (grows downward as more mappings are made)
* | Mapping |
@ -40,31 +156,183 @@ static struct k_spinlock mm_lock;
* | ... |
* +--------------+
* | Mapping |
* +--------------+ <- CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE
* +--------------+ <- mappings start here
* | Reserved | <- special purpose virtual page(s) of size Z_VM_RESERVED
* +--------------+ <- Z_VIRT_RAM_END
*
* At the moment we just have one area for mappings and they are permanent.
* This is under heavy development and may change.
* At the moment we just have one downward-growing area for mappings.
* There is currently no support for un-mapping memory, see #28900.
*/
static uint8_t *mapping_pos = Z_VIRT_RAM_END - Z_VM_RESERVED;
/* Get a chunk of virtual memory and mark it as being in-use.
*
* This may be called from arch early boot code before z_cstart() is invoked.
* Data will be copied and BSS zeroed, but this must not rely on any
* initialization functions being called prior to work correctly.
*/
static void *virt_region_get(size_t size)
{
uint8_t *dest_addr;
if ((mapping_pos - size) < Z_KERNEL_VIRT_END) {
LOG_ERR("insufficient virtual address space (requested %zu)",
size);
return NULL;
}
mapping_pos -= size;
dest_addr = mapping_pos;
return dest_addr;
}
/*
* Free page frames management
*
* Call all of these functions with z_mm_lock held.
*/
/* Current position for memory mappings in kernel memory.
* At the moment, all kernel memory mappings are permanent.
* Memory mappings start at the end of the address space, and grow
* downward.
*
* All of this is under heavy development and is subject to change.
*/
static uint8_t *mapping_pos =
(uint8_t *)((uintptr_t)CONFIG_KERNEL_VM_BASE +
(uintptr_t)CONFIG_KERNEL_VM_SIZE);
/* Lower-limit of virtual address mapping. Immediately below this is the
* permanent identity mapping for all SRAM.
/* Linked list of unused and available page frames.
*
* TODO: This is very simple and treats all free page frames as being equal.
* However, there are use-cases to consolidate free pages such that entire
* SRAM banks can be switched off to save power, and so obtaining free pages
* may require a more complex ontology which prefers page frames in RAM banks
* which are still active.
*
* This implies in the future there may be multiple slists managing physical
* pages. Each page frame will still just have one snode link.
*/
static uint8_t *mapping_limit =
(uint8_t *)((uintptr_t)CONFIG_KERNEL_VM_BASE +
(size_t)CONFIG_KERNEL_RAM_SIZE);
static sys_slist_t free_page_frame_list;
size_t k_mem_region_align(uintptr_t *aligned_addr, size_t *aligned_size,
/* Number of unused and available free page frames */
size_t z_free_page_count;
#define PF_ASSERT(pf, expr, fmt, ...) \
__ASSERT(expr, "page frame 0x%lx: " fmt, z_page_frame_to_phys(pf), \
##__VA_ARGS__)
/* Get an unused page frame. don't care which one, or NULL if there are none */
static struct z_page_frame *free_page_frame_list_get(void)
{
sys_snode_t *node;
struct z_page_frame *pf = NULL;
node = sys_slist_get(&free_page_frame_list);
if (node != NULL) {
z_free_page_count--;
pf = CONTAINER_OF(node, struct z_page_frame, node);
PF_ASSERT(pf, z_page_frame_is_available(pf),
"unavailable but somehow on free list");
}
return pf;
}
/* Release a page frame back into the list of free pages */
static void free_page_frame_list_put(struct z_page_frame *pf)
{
PF_ASSERT(pf, z_page_frame_is_available(pf),
"unavailable page put on free list");
sys_slist_append(&free_page_frame_list, &pf->node);
z_free_page_count++;
}
static void free_page_frame_list_init(void)
{
sys_slist_init(&free_page_frame_list);
}
/*
* Memory Mapping
*/
/* Called after the frame is mapped in the arch layer, to update our
* local ontology (and do some assertions while we're at it)
*/
static void frame_mapped_set(struct z_page_frame *pf, void *addr)
{
PF_ASSERT(pf, !z_page_frame_is_reserved(pf),
"attempted to map a reserved page frame");
/* We do allow multiple mappings for pinned page frames
* since we will never need to reverse map them.
* This is uncommon, use-cases are for things like the
* Zephyr equivalent of VSDOs
*/
PF_ASSERT(pf, !z_page_frame_is_mapped(pf) || z_page_frame_is_pinned(pf),
"non-pinned and already mapped to %p", pf->addr);
pf->flags |= Z_PAGE_FRAME_MAPPED;
pf->addr = addr;
pf->refcount++;
}
/* This may be called from arch early boot code before z_cstart() is invoked.
* Data will be copied and BSS zeroed, but this must not rely on any
* initialization functions being called prior to work correctly.
*/
void z_phys_map(uint8_t **virt_ptr, uintptr_t phys, size_t size, uint32_t flags)
{
uintptr_t aligned_phys, addr_offset;
size_t aligned_size;
int ret;
k_spinlock_key_t key;
uint8_t *dest_addr;
addr_offset = k_mem_region_align(&aligned_phys, &aligned_size,
phys, size,
CONFIG_MMU_PAGE_SIZE);
__ASSERT(aligned_size != 0, "0-length mapping at 0x%lx", aligned_phys);
__ASSERT(aligned_phys < (aligned_phys + (aligned_size - 1)),
"wraparound for physical address 0x%lx (size %zu)",
aligned_phys, aligned_size);
key = k_spin_lock(&z_mm_lock);
/* Obtain an appropriately sized chunk of virtual memory */
dest_addr = virt_region_get(aligned_size);
if (!dest_addr) {
goto fail;
}
/* If this fails there's something amiss with virt_region_get */
__ASSERT((uintptr_t)dest_addr <
((uintptr_t)dest_addr + (size - 1)),
"wraparound for virtual address %p (size %zu)",
dest_addr, size);
LOG_DBG("arch_mem_map(%p, 0x%lx, %zu, %x) offset %lu", dest_addr,
aligned_phys, aligned_size, flags, addr_offset);
ret = arch_mem_map(dest_addr, aligned_phys, aligned_size, flags);
if (ret != 0) {
LOG_ERR("arch_mem_map() failed with %d", ret);
goto fail;
}
k_spin_unlock(&z_mm_lock, key);
*virt_ptr = dest_addr + addr_offset;
return;
fail:
/* May re-visit this in the future, but for now running out of
* virtual address space or failing the arch_mem_map() call is
* an unrecoverable situation.
*
* Other problems not related to resource exhaustion we leave as
* assertions since they are clearly programming mistakes.
*/
LOG_ERR("memory mapping 0x%lx (size %zu, flags 0x%x) failed",
phys, size, flags);
k_panic();
}
/*
* Miscellaneous
*/
size_t k_mem_region_align(uintptr_t *aligned_phys, size_t *aligned_size,
uintptr_t phys_addr, size_t size, size_t align)
{
size_t addr_offset;
@ -72,66 +340,58 @@ size_t k_mem_region_align(uintptr_t *aligned_addr, size_t *aligned_size,
/* The actual mapped region must be page-aligned. Round down the
* physical address and pad the region size appropriately
*/
*aligned_addr = ROUND_DOWN(phys_addr, align);
addr_offset = phys_addr - *aligned_addr;
*aligned_phys = ROUND_DOWN(phys_addr, align);
addr_offset = phys_addr - *aligned_phys;
*aligned_size = ROUND_UP(size + addr_offset, align);
return addr_offset;
}
void z_phys_map(uint8_t **virt_ptr, uintptr_t phys, size_t size, uint32_t flags)
#define VM_OFFSET ((CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_OFFSET) - \
CONFIG_SRAM_BASE_ADDRESS)
/* Only applies to boot RAM mappings within the Zephyr image that have never
* been remapped or paged out. Never use this unless you know exactly what you
* are doing.
*/
#define BOOT_VIRT_TO_PHYS(virt) ((uintptr_t)(((uint8_t *)virt) + VM_OFFSET))
void z_mem_manage_init(void)
{
uintptr_t aligned_addr, addr_offset;
size_t aligned_size;
int ret;
k_spinlock_key_t key;
uint8_t *dest_virt;
uintptr_t phys;
uint8_t *addr;
struct z_page_frame *pf;
k_spinlock_key_t key = k_spin_lock(&z_mm_lock);
addr_offset = k_mem_region_align(&aligned_addr, &aligned_size,
phys, size,
CONFIG_MMU_PAGE_SIZE);
free_page_frame_list_init();
key = k_spin_lock(&mm_lock);
/* Carve out some unused virtual memory from the top of the
* address space
#ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES
/* If some page frames are unavailable for use as memory, arch
* code will mark Z_PAGE_FRAME_RESERVED in their flags
*/
if ((mapping_pos - aligned_size) < mapping_limit) {
LOG_ERR("insufficient kernel virtual address space");
goto fail;
arch_reserved_pages_update();
#endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */
/* All pages composing the Zephyr image are mapped at boot in a
* predictable way. This can change at runtime.
*/
VIRT_FOREACH(Z_KERNEL_VIRT_START, Z_KERNEL_VIRT_SIZE, addr)
{
frame_mapped_set(z_phys_to_page_frame(BOOT_VIRT_TO_PHYS(addr)),
addr);
}
mapping_pos -= aligned_size;
dest_virt = mapping_pos;
LOG_DBG("arch_mem_map(%p, 0x%lx, %zu, %x) offset %lu\n", dest_virt,
aligned_addr, aligned_size, flags, addr_offset);
__ASSERT(dest_virt != NULL, "NULL page memory mapping");
__ASSERT(aligned_size != 0, "0-length mapping at 0x%lx", aligned_addr);
__ASSERT((uintptr_t)dest_virt <
((uintptr_t)dest_virt + (aligned_size - 1)),
"wraparound for virtual address %p (size %zu)",
dest_virt, size);
__ASSERT(aligned_addr < (aligned_addr + (size - 1)),
"wraparound for physical address 0x%lx (size %zu)",
aligned_addr, size);
ret = arch_mem_map(dest_virt, aligned_addr, aligned_size, flags);
k_spin_unlock(&mm_lock, key);
if (ret == 0) {
*virt_ptr = dest_virt + addr_offset;
} else {
/* This happens if there is an insurmountable problem
* with the selected cache modes or access flags
* with no safe fallback
*/
LOG_ERR("arch_mem_map() to %p returned %d", dest_virt, ret);
goto fail;
/* Any remaining pages that aren't mapped, reserved, or pinned get
* added to the free pages list
*/
Z_PAGE_FRAME_FOREACH(phys, pf) {
if (z_page_frame_is_available(pf)) {
free_page_frame_list_put(pf);
}
}
return;
fail:
LOG_ERR("memory mapping 0x%lx (size %zu, flags 0x%x) failed",
phys, size, flags);
k_panic();
LOG_DBG("free page frames: %zu", z_free_page_count);
#if __ASSERT_ON
page_frames_initialized = true;
#endif
k_spin_unlock(&z_mm_lock, key);
}