kernel: split timeslicing/ipi code out of sched.c

Move both timeslicing and IPI code to own files.

Signed-off-by: Anas Nashif <anas.nashif@intel.com>
This commit is contained in:
Anas Nashif 2024-03-08 07:51:01 -05:00
parent 31bc210bbc
commit 37df485463
6 changed files with 225 additions and 177 deletions

View file

@ -86,11 +86,18 @@ list(APPEND kernel_files
if(CONFIG_SMP)
list(APPEND kernel_files
smp.c)
smp.c
ipi.c)
endif()
endif()
if(CONFIG_TIMESLICING)
list(APPEND kernel_files
timeslicing.c)
endif()
if(CONFIG_SPIN_VALIDATE)
list(APPEND kernel_files
spinlock_validate.c)

19
kernel/include/ipi.h Normal file
View file

@ -0,0 +1,19 @@
/*
* Copyright (c) 2024 Intel Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_KERNEL_INCLUDE_IPI_H_
#define ZEPHYR_KERNEL_INCLUDE_IPI_H_
/* defined in ipi.c when CONFIG_SMP=y */
#ifdef CONFIG_SMP
void flag_ipi(void);
void signal_pending_ipi(void);
#else
#define flag_ipi() do { } while (false)
#define signal_pending_ipi() do { } while (false)
#endif /* CONFIG_SMP */
#endif /* ZEPHYR_KERNEL_INCLUDE_IPI_H_ */

View file

@ -62,6 +62,8 @@ void z_ready_thread(struct k_thread *thread);
void z_requeue_current(struct k_thread *curr);
struct k_thread *z_swap_next_thread(void);
void z_thread_abort(struct k_thread *thread);
void move_thread_to_end_of_prio_q(struct k_thread *thread);
bool thread_is_sliceable(struct k_thread *thread);
static inline void z_reschedule_unlocked(void)
{

59
kernel/ipi.c Normal file
View file

@ -0,0 +1,59 @@
/**
* Copyright (c) 2024 Intel Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <kswap.h>
#include <ksched.h>
#include <ipi.h>
#ifdef CONFIG_TRACE_SCHED_IPI
extern void z_trace_sched_ipi(void);
#endif
void flag_ipi(void)
{
#if defined(CONFIG_SCHED_IPI_SUPPORTED)
if (arch_num_cpus() > 1) {
_kernel.pending_ipi = true;
}
#endif /* CONFIG_SCHED_IPI_SUPPORTED */
}
void signal_pending_ipi(void)
{
/* Synchronization note: you might think we need to lock these
* two steps, but an IPI is idempotent. It's OK if we do it
* twice. All we require is that if a CPU sees the flag true,
* it is guaranteed to send the IPI, and if a core sets
* pending_ipi, the IPI will be sent the next time through
* this code.
*/
#if defined(CONFIG_SCHED_IPI_SUPPORTED)
if (arch_num_cpus() > 1) {
if (_kernel.pending_ipi) {
_kernel.pending_ipi = false;
arch_sched_ipi();
}
}
#endif /* CONFIG_SCHED_IPI_SUPPORTED */
}
void z_sched_ipi(void)
{
/* NOTE: When adding code to this, make sure this is called
* at appropriate location when !CONFIG_SCHED_IPI_SUPPORTED.
*/
#ifdef CONFIG_TRACE_SCHED_IPI
z_trace_sched_ipi();
#endif /* CONFIG_TRACE_SCHED_IPI */
#ifdef CONFIG_TIMESLICING
if (sliceable(_current)) {
z_time_slice();
}
#endif /* CONFIG_TIMESLICING */
}

View file

@ -10,6 +10,7 @@
#include <kthread.h>
#include <priority_q.h>
#include <kswap.h>
#include <ipi.h>
#include <kernel_arch_func.h>
#include <zephyr/internal/syscall_handler.h>
#include <zephyr/drivers/timer/system_timer.h>
@ -23,6 +24,10 @@
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
#if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_TIMESLICING)
extern struct k_thread *pending_current;
#endif
struct k_spinlock _sched_spinlock;
static void update_cache(int preempt_ok);
@ -188,25 +193,6 @@ static ALWAYS_INLINE void dequeue_thread(struct k_thread *thread)
}
}
static void signal_pending_ipi(void)
{
/* Synchronization note: you might think we need to lock these
* two steps, but an IPI is idempotent. It's OK if we do it
* twice. All we require is that if a CPU sees the flag true,
* it is guaranteed to send the IPI, and if a core sets
* pending_ipi, the IPI will be sent the next time through
* this code.
*/
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED)
if (arch_num_cpus() > 1) {
if (_kernel.pending_ipi) {
_kernel.pending_ipi = false;
arch_sched_ipi();
}
}
#endif /* CONFIG_SMP && CONFIG_SCHED_IPI_SUPPORTED */
}
#ifdef CONFIG_SMP
/* Called out of z_swap() when CONFIG_SMP. The current thread can
* never live in the run queue until we are inexorably on the context
@ -330,7 +316,7 @@ static ALWAYS_INLINE struct k_thread *next_up(void)
#endif /* CONFIG_SMP */
}
static void move_thread_to_end_of_prio_q(struct k_thread *thread)
void move_thread_to_end_of_prio_q(struct k_thread *thread)
{
if (z_is_thread_queued(thread)) {
dequeue_thread(thread);
@ -339,140 +325,6 @@ static void move_thread_to_end_of_prio_q(struct k_thread *thread)
update_cache(thread == _current);
}
static void flag_ipi(void)
{
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED)
if (arch_num_cpus() > 1) {
_kernel.pending_ipi = true;
}
#endif /* CONFIG_SMP && CONFIG_SCHED_IPI_SUPPORTED */
}
#ifdef CONFIG_TIMESLICING
static int slice_ticks = DIV_ROUND_UP(CONFIG_TIMESLICE_SIZE * Z_HZ_ticks, Z_HZ_ms);
static int slice_max_prio = CONFIG_TIMESLICE_PRIORITY;
static struct _timeout slice_timeouts[CONFIG_MP_MAX_NUM_CPUS];
static bool slice_expired[CONFIG_MP_MAX_NUM_CPUS];
#ifdef CONFIG_SWAP_NONATOMIC
/* If z_swap() isn't atomic, then it's possible for a timer interrupt
* to try to timeslice away _current after it has already pended
* itself but before the corresponding context switch. Treat that as
* a noop condition in z_time_slice().
*/
static struct k_thread *pending_current;
#endif /* CONFIG_SWAP_NONATOMIC */
static inline int slice_time(struct k_thread *thread)
{
int ret = slice_ticks;
#ifdef CONFIG_TIMESLICE_PER_THREAD
if (thread->base.slice_ticks != 0) {
ret = thread->base.slice_ticks;
}
#else
ARG_UNUSED(thread);
#endif /* CONFIG_TIMESLICE_PER_THREAD */
return ret;
}
static inline bool sliceable(struct k_thread *thread)
{
bool ret = is_preempt(thread)
&& slice_time(thread) != 0
&& !z_is_prio_higher(thread->base.prio, slice_max_prio)
&& !z_is_thread_prevented_from_running(thread)
&& !z_is_idle_thread_object(thread);
#ifdef CONFIG_TIMESLICE_PER_THREAD
ret |= thread->base.slice_ticks != 0;
#endif /* CONFIG_TIMESLICE_PER_THREAD */
return ret;
}
static void slice_timeout(struct _timeout *timeout)
{
int cpu = ARRAY_INDEX(slice_timeouts, timeout);
slice_expired[cpu] = true;
/* We need an IPI if we just handled a timeslice expiration
* for a different CPU. Ideally this would be able to target
* the specific core, but that's not part of the API yet.
*/
if (IS_ENABLED(CONFIG_SMP) && cpu != _current_cpu->id) {
flag_ipi();
}
}
void z_reset_time_slice(struct k_thread *thread)
{
int cpu = _current_cpu->id;
z_abort_timeout(&slice_timeouts[cpu]);
slice_expired[cpu] = false;
if (sliceable(thread)) {
z_add_timeout(&slice_timeouts[cpu], slice_timeout,
K_TICKS(slice_time(thread) - 1));
}
}
void k_sched_time_slice_set(int32_t slice, int prio)
{
K_SPINLOCK(&_sched_spinlock) {
slice_ticks = k_ms_to_ticks_ceil32(slice);
slice_max_prio = prio;
z_reset_time_slice(_current);
}
}
#ifdef CONFIG_TIMESLICE_PER_THREAD
void k_thread_time_slice_set(struct k_thread *thread, int32_t thread_slice_ticks,
k_thread_timeslice_fn_t expired, void *data)
{
K_SPINLOCK(&_sched_spinlock) {
thread->base.slice_ticks = thread_slice_ticks;
thread->base.slice_expired = expired;
thread->base.slice_data = data;
}
}
#endif /* CONFIG_TIMESLICE_PER_THREAD */
/* Called out of each timer interrupt */
void z_time_slice(void)
{
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
struct k_thread *curr = _current;
#ifdef CONFIG_SWAP_NONATOMIC
if (pending_current == curr) {
z_reset_time_slice(curr);
k_spin_unlock(&_sched_spinlock, key);
return;
}
pending_current = NULL;
#endif /* CONFIG_SWAP_NONATOMIC */
if (slice_expired[_current_cpu->id] && sliceable(curr)) {
#ifdef CONFIG_TIMESLICE_PER_THREAD
if (curr->base.slice_expired) {
k_spin_unlock(&_sched_spinlock, key);
curr->base.slice_expired(curr, curr->base.slice_data);
key = k_spin_lock(&_sched_spinlock);
}
#endif /* CONFIG_TIMESLICE_PER_THREAD */
if (!z_is_thread_prevented_from_running(curr)) {
move_thread_to_end_of_prio_q(curr);
}
z_reset_time_slice(curr);
}
k_spin_unlock(&_sched_spinlock, key);
}
#endif /* CONFIG_TIMESLICING */
/* Track cooperative threads preempted by metairqs so we can return to
* them specifically. Called at the moment a new thread has been
* selected to run.
@ -1433,28 +1285,6 @@ void z_impl_k_wakeup(k_tid_t thread)
}
}
#ifdef CONFIG_TRACE_SCHED_IPI
extern void z_trace_sched_ipi(void);
#endif /* CONFIG_TRACE_SCHED_IPI */
#ifdef CONFIG_SMP
void z_sched_ipi(void)
{
/* NOTE: When adding code to this, make sure this is called
* at appropriate location when !CONFIG_SCHED_IPI_SUPPORTED.
*/
#ifdef CONFIG_TRACE_SCHED_IPI
z_trace_sched_ipi();
#endif /* CONFIG_TRACE_SCHED_IPI */
#ifdef CONFIG_TIMESLICING
if (sliceable(_current)) {
z_time_slice();
}
#endif /* CONFIG_TIMESLICING */
}
#endif /* CONFIG_SMP */
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_wakeup(k_tid_t thread)
{

131
kernel/timeslicing.c Normal file
View file

@ -0,0 +1,131 @@
/*
* Copyright (c) 2018, 2024 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <kswap.h>
#include <ksched.h>
#include <ipi.h>
static int slice_ticks = DIV_ROUND_UP(CONFIG_TIMESLICE_SIZE * Z_HZ_ticks, Z_HZ_ms);
static int slice_max_prio = CONFIG_TIMESLICE_PRIORITY;
static struct _timeout slice_timeouts[CONFIG_MP_MAX_NUM_CPUS];
static bool slice_expired[CONFIG_MP_MAX_NUM_CPUS];
#ifdef CONFIG_SWAP_NONATOMIC
/* If z_swap() isn't atomic, then it's possible for a timer interrupt
* to try to timeslice away _current after it has already pended
* itself but before the corresponding context switch. Treat that as
* a noop condition in z_time_slice().
*/
struct k_thread *pending_current;
#endif
static inline int slice_time(struct k_thread *thread)
{
int ret = slice_ticks;
#ifdef CONFIG_TIMESLICE_PER_THREAD
if (thread->base.slice_ticks != 0) {
ret = thread->base.slice_ticks;
}
#else
ARG_UNUSED(thread);
#endif
return ret;
}
bool sliceable(struct k_thread *thread)
{
bool ret = is_preempt(thread)
&& slice_time(thread) != 0
&& !z_is_prio_higher(thread->base.prio, slice_max_prio)
&& !z_is_thread_prevented_from_running(thread)
&& !z_is_idle_thread_object(thread);
#ifdef CONFIG_TIMESLICE_PER_THREAD
ret |= thread->base.slice_ticks != 0;
#endif
return ret;
}
static void slice_timeout(struct _timeout *timeout)
{
int cpu = ARRAY_INDEX(slice_timeouts, timeout);
slice_expired[cpu] = true;
/* We need an IPI if we just handled a timeslice expiration
* for a different CPU. Ideally this would be able to target
* the specific core, but that's not part of the API yet.
*/
if (IS_ENABLED(CONFIG_SMP) && cpu != _current_cpu->id) {
flag_ipi();
}
}
void z_reset_time_slice(struct k_thread *thread)
{
int cpu = _current_cpu->id;
z_abort_timeout(&slice_timeouts[cpu]);
slice_expired[cpu] = false;
if (sliceable(thread)) {
z_add_timeout(&slice_timeouts[cpu], slice_timeout,
K_TICKS(slice_time(thread) - 1));
}
}
void k_sched_time_slice_set(int32_t slice, int prio)
{
K_SPINLOCK(&_sched_spinlock) {
slice_ticks = k_ms_to_ticks_ceil32(slice);
slice_max_prio = prio;
z_reset_time_slice(_current);
}
}
#ifdef CONFIG_TIMESLICE_PER_THREAD
void k_thread_time_slice_set(struct k_thread *thread, int32_t thread_slice_ticks,
k_thread_timeslice_fn_t expired, void *data)
{
K_SPINLOCK(&_sched_spinlock) {
thread->base.slice_ticks = thread_slice_ticks;
thread->base.slice_expired = expired;
thread->base.slice_data = data;
}
}
#endif
/* Called out of each timer interrupt */
void z_time_slice(void)
{
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
struct k_thread *curr = _current;
#ifdef CONFIG_SWAP_NONATOMIC
if (pending_current == curr) {
z_reset_time_slice(curr);
k_spin_unlock(&_sched_spinlock, key);
return;
}
pending_current = NULL;
#endif
if (slice_expired[_current_cpu->id] && sliceable(curr)) {
#ifdef CONFIG_TIMESLICE_PER_THREAD
if (curr->base.slice_expired) {
k_spin_unlock(&_sched_spinlock, key);
curr->base.slice_expired(curr, curr->base.slice_data);
key = k_spin_lock(&_sched_spinlock);
}
#endif
if (!z_is_thread_prevented_from_running(curr)) {
move_thread_to_end_of_prio_q(curr);
}
z_reset_time_slice(curr);
}
k_spin_unlock(&_sched_spinlock, key);
}