posix: timer: use async pthread cancellation

Previously, Zephyr's POSIX API did not differentiate between
deferred and asynchronous pthread cancellation. In fact all
pthread cancellation was asynchronous. According to the spec,
all pthreads should be created with deferred cancellation by
default.

Note: PTHREAD_CANCEL_ASYNCHRONOUS means cancel asynchronously
with respect to cancellation points (but synchronously with
respect to the thread that callse pthread_cancel(), which is
perhaps unintuitive).

The POSIX timer relied on this non-standard convention.

Oddly, this change prevents what would have otherwise been a
regression that would have been caused by fixing pthread
behaviour (in a separate commit).

We are effectively uncovering bugs which were probably always
present in the pthread.c and timer.c implementations going
back quite a few years.

Signed-off-by: Christopher Friedt <cfriedt@meta.com>
This commit is contained in:
Christopher Friedt 2024-01-20 09:07:21 -05:00 committed by Chris Friedt
parent 689dc4a45b
commit 3ff7c04f30

View file

@ -1,24 +1,27 @@
/* /*
* Copyright (c) 2018 Intel Corporation * Copyright (c) 2018 Intel Corporation
* Copyright (c) 2024, Meta
* *
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
#include <zephyr/kernel.h>
#include <errno.h> #include <errno.h>
#include <string.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/posix/pthread.h> #include <zephyr/posix/pthread.h>
#include <zephyr/sys/printk.h>
#include <zephyr/posix/signal.h> #include <zephyr/posix/signal.h>
#include <zephyr/posix/time.h> #include <zephyr/posix/time.h>
#define ACTIVE 1 #define ACTIVE 1
#define NOT_ACTIVE 0 #define NOT_ACTIVE 0
LOG_MODULE_REGISTER(posix_timer);
static void zephyr_timer_wrapper(struct k_timer *ztimer); static void zephyr_timer_wrapper(struct k_timer *ztimer);
struct timer_obj { struct timer_obj {
struct k_timer ztimer; struct k_timer ztimer;
struct sigevent sev; struct sigevent evp;
struct k_sem sem_cond; struct k_sem sem_cond;
pthread_t thread; pthread_t thread;
struct timespec interval; /* Reload value */ struct timespec interval; /* Reload value */
@ -37,23 +40,53 @@ static void zephyr_timer_wrapper(struct k_timer *ztimer)
if (timer->reload == 0U) { if (timer->reload == 0U) {
timer->status = NOT_ACTIVE; timer->status = NOT_ACTIVE;
LOG_DBG("timer %p not active", timer);
return;
} }
(timer->sev.sigev_notify_function)(timer->sev.sigev_value); if (timer->evp.sigev_notify == SIGEV_NONE) {
LOG_DBG("SIGEV_NONE");
return;
}
if (timer->evp.sigev_notify_function == NULL) {
LOG_DBG("NULL sigev_notify_function");
return;
}
LOG_DBG("calling sigev_notify_function %p", timer->evp.sigev_notify_function);
(timer->evp.sigev_notify_function)(timer->evp.sigev_value);
} }
static void *zephyr_thread_wrapper(void *arg) static void *zephyr_thread_wrapper(void *arg)
{ {
int ret;
struct timer_obj *timer = (struct timer_obj *)arg; struct timer_obj *timer = (struct timer_obj *)arg;
ret = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
__ASSERT(ret == 0, "pthread_setcanceltype() failed: %d", ret);
if (timer->evp.sigev_notify_attributes == NULL) {
ret = pthread_detach(pthread_self());
__ASSERT(ret == 0, "pthread_detach() failed: %d", ret);
}
while (1) { while (1) {
if (timer->reload == 0U) { if (timer->reload == 0U) {
timer->status = NOT_ACTIVE; timer->status = NOT_ACTIVE;
LOG_DBG("timer %p not active", timer);
} }
k_sem_take(&timer->sem_cond, K_FOREVER); ret = k_sem_take(&timer->sem_cond, K_FOREVER);
__ASSERT(ret == 0, "k_sem_take() failed: %d", ret);
(timer->sev.sigev_notify_function)(timer->sev.sigev_value); if (timer->evp.sigev_notify_function == NULL) {
LOG_DBG("NULL sigev_notify_function");
continue;
}
LOG_DBG("calling sigev_notify_function %p", timer->evp.sigev_notify_function);
(timer->evp.sigev_notify_function)(timer->evp.sigev_value);
} }
return NULL; return NULL;
@ -77,52 +110,89 @@ static void zephyr_timer_interrupt(struct k_timer *ztimer)
*/ */
int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid) int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid)
{ {
int ret = 0;
int detachstate;
struct timer_obj *timer; struct timer_obj *timer;
const k_timeout_t alloc_timeout = K_MSEC(CONFIG_TIMER_CREATE_WAIT); const k_timeout_t alloc_timeout = K_MSEC(CONFIG_TIMER_CREATE_WAIT);
if (evp == NULL || (evp->sigev_notify != SIGEV_NONE && evp->sigev_notify != SIGEV_SIGNAL && if (evp == NULL || timerid == NULL) {
evp->sigev_notify != SIGEV_THREAD)) {
errno = EINVAL; errno = EINVAL;
return -1; return -1;
} }
if (k_mem_slab_alloc(&posix_timer_slab, (void **)&timer, alloc_timeout) == 0) { if (k_mem_slab_alloc(&posix_timer_slab, (void **)&timer, alloc_timeout) != 0) {
(void)memset(timer, 0, sizeof(struct timer_obj)); LOG_DBG("k_mem_slab_alloc() failed: %d", ret);
} else {
errno = ENOMEM; errno = ENOMEM;
return -1; return -1;
} }
timer->sev.sigev_notify_function = evp->sigev_notify_function; *timer = (struct timer_obj){0};
timer->sev.sigev_value = evp->sigev_value; timer->evp = *evp;
timer->interval.tv_sec = 0; evp = &timer->evp;
timer->interval.tv_nsec = 0;
timer->reload = 0U;
timer->status = NOT_ACTIVE;
if (evp->sigev_notify == SIGEV_NONE) { switch (evp->sigev_notify) {
case SIGEV_NONE:
k_timer_init(&timer->ztimer, NULL, NULL); k_timer_init(&timer->ztimer, NULL, NULL);
} else if (evp->sigev_notify == SIGEV_THREAD) { break;
int ret; case SIGEV_SIGNAL:
k_timer_init(&timer->ztimer, zephyr_timer_wrapper, NULL);
break;
case SIGEV_THREAD:
if (evp->sigev_notify_attributes != NULL) {
ret = pthread_attr_getdetachstate(evp->sigev_notify_attributes,
&detachstate);
if (ret != 0) {
LOG_DBG("pthread_attr_getdetachstate() failed: %d", ret);
errno = ret;
ret = -1;
goto free_timer;
}
if (detachstate != PTHREAD_CREATE_DETACHED) {
ret = pthread_attr_setdetachstate(evp->sigev_notify_attributes,
PTHREAD_CREATE_DETACHED);
if (ret != 0) {
LOG_DBG("pthread_attr_setdetachstate() failed: %d", ret);
errno = ret;
ret = -1;
goto free_timer;
}
}
}
ret = k_sem_init(&timer->sem_cond, 0, 1);
if (ret != 0) {
LOG_DBG("k_sem_init() failed: %d", ret);
errno = -ret;
ret = -1;
goto free_timer;
}
timer->sev.sigev_notify = SIGEV_THREAD;
k_sem_init(&timer->sem_cond, 0, 1);
ret = pthread_create(&timer->thread, evp->sigev_notify_attributes, ret = pthread_create(&timer->thread, evp->sigev_notify_attributes,
zephyr_thread_wrapper, timer); zephyr_thread_wrapper, timer);
if (ret != 0) { if (ret != 0) {
k_mem_slab_free(&posix_timer_slab, (void *) &timer); LOG_DBG("pthread_create() failed: %d", ret);
return ret; errno = ret;
ret = -1;
goto free_timer;
} }
pthread_detach(timer->thread);
k_timer_init(&timer->ztimer, zephyr_timer_interrupt, NULL); k_timer_init(&timer->ztimer, zephyr_timer_interrupt, NULL);
} else { break;
k_timer_init(&timer->ztimer, zephyr_timer_wrapper, NULL); default:
ret = -1;
errno = EINVAL;
goto free_timer;
} }
*timerid = (timer_t)timer; *timerid = (timer_t)timer;
goto out;
return 0; free_timer:
k_mem_slab_free(&posix_timer_slab, (void *)&timer);
out:
return ret;
} }
/** /**
@ -262,8 +332,8 @@ int timer_delete(timer_t timerid)
k_timer_stop(&timer->ztimer); k_timer_stop(&timer->ztimer);
} }
if (timer->sev.sigev_notify == SIGEV_THREAD) { if (timer->evp.sigev_notify == SIGEV_THREAD) {
pthread_cancel(timer->thread); (void)pthread_cancel(timer->thread);
} }
k_mem_slab_free(&posix_timer_slab, (void *)timer); k_mem_slab_free(&posix_timer_slab, (void *)timer);