samples: drivers: espi: Add simple SAF tests

Update sample espi driver test to exercise some SAF functionality
based on the limited hardware available. Note the SAF test will
erase a section of the flash. SAF tests are enabled for the EVB only.

Signed-off-by: Scott Worley <scott.worley@microchip.com>
This commit is contained in:
Scott Worley 2020-11-09 12:13:59 -05:00 committed by Anas Nashif
parent 2b926db4e1
commit 4bf9db6916
5 changed files with 784 additions and 1 deletions

View file

@ -13,3 +13,10 @@
rsm-gpios = <&gpio_040_076 12 GPIO_ACTIVE_HIGH>;
};
};
&spi0 {
status = "okay";
port_sel = <0>;
chip_select = <0>;
lines = <4>;
};

View file

@ -13,3 +13,10 @@
rsm-gpios = <&gpio_040_076 12 GPIO_ACTIVE_HIGH>;
};
};
&spi0 {
status = "okay";
port_sel = <0>;
chip_select = <0>;
lines = <4>;
};

View file

@ -1,4 +1,3 @@
CONFIG_ESPI=y
CONFIG_STDOUT_CONSOLE=y
CONFIG_PRINTK=y

View file

@ -0,0 +1,13 @@
# eSPI + mec15xxevb_assy6853
CONFIG_ESPI=y
CONFIG_LOG=y
CONFIG_LOG_BUFFER_SIZE=4096
CONFIG_LOG_PROCESS_THREAD_SLEEP_MS=100
# Disable only for this board to check notifications
CONFIG_ESPI_AUTOMATIC_WARNING_ACKNOWLEDGE=n
# Sample code doesn't handle ACPI host communication
CONFIG_ESPI_PERIPHERAL_HOST_IO=n
# Test SAF flash portal read/erase/write on EVB
CONFIG_ESPI_SAF=y
CONFIG_SPI=y
CONFIG_SPI_XEC_QMSPI=y

View file

@ -10,6 +10,8 @@
#include <soc.h>
#include <drivers/gpio.h>
#include <drivers/espi.h>
#include <drivers/espi_saf.h>
#include <drivers/spi.h>
#include <logging/log_ctrl.h>
#include <logging/log.h>
#ifdef CONFIG_ESPI_OOB_CHANNEL
@ -67,6 +69,717 @@ static uint8_t flash_write_buf[MAX_TEST_BUF_SIZE];
static uint8_t flash_read_buf[MAX_TEST_BUF_SIZE];
#endif
#ifdef CONFIG_ESPI_SAF
#define ESPI_SAF_DEV DT_LABEL(DT_NODELABEL(espi_saf0))
#define SPI_DEV DT_LABEL(DT_NODELABEL(spi0))
#define SAF_BASE_ADDR DT_REG_ADDR(DT_INST(0, microchip_xec_espi_saf))
#define SAF_TEST_FREQ_HZ 24000000U
#define SAF_TEST_BUF_SIZE 4096U
/* SPI address of 4KB sector modified by test */
#define SAF_SPI_TEST_ADDRESS 0x1000U
#define SPI_WRITE_STATUS1 0x01U
#define SPI_WRITE_STATUS2 0x31U
#define SPI_WRITE_DISABLE 0x04U
#define SPI_READ_STATUS1 0x05U
#define SPI_WRITE_ENABLE 0x06U
#define SPI_READ_STATUS2 0x35U
#define SPI_WRITE_ENABLE_VS 0x50U
#define SPI_READ_JEDEC_ID 0x9FU
#define SPI_STATUS1_BUSY 0x80U
#define SPI_STATUS2_QE 0x02U
#define W25Q128_JEDEC_ID 0x001840efU
enum saf_erase_size {
SAF_ERASE_4K = 0,
SAF_ERASE_32K = 1,
SAF_ERASE_64K = 2,
SAF_ERASE_MAX
};
struct saf_addr_info {
uintptr_t saf_struct_addr;
uintptr_t saf_exp_addr;
};
static const struct device *qspi_dev;
static const struct device *espi_saf_dev;
static uint8_t safbuf[SAF_TEST_BUF_SIZE] __aligned(4);
static uint8_t safbuf2[SAF_TEST_BUF_SIZE] __aligned(4);
/*
* W25Q128 SPI flash SAF configuration.
* Size is 16Mbytes, it requires no continuous mode prefix, or
* other special SAF configuration.
*/
static const struct espi_saf_flash_cfg flash_w25q128 = {
.flashsz = 0x1000000U,
.opa = MCHP_SAF_OPCODE_REG_VAL(0x06U, 0x75U, 0x7aU, 0x05U),
.opb = MCHP_SAF_OPCODE_REG_VAL(0x20U, 0x52U, 0xd8U, 0x02U),
.opc = MCHP_SAF_OPCODE_REG_VAL(0xebU, 0xffU, 0xa5U, 0x35U),
.poll2_mask = MCHP_W25Q128_POLL2_MASK,
.cont_prefix = 0U,
.cs_cfg_descr_ids = MCHP_CS0_CFG_DESCR_IDX_REG_VAL,
.flags = 0,
.descr = {
MCHP_W25Q128_CM_RD_D0,
MCHP_W25Q128_CM_RD_D1,
MCHP_W25Q128_CM_RD_D2,
MCHP_W25Q128_ENTER_CM_D0,
MCHP_W25Q128_ENTER_CM_D1,
MCHP_W25Q128_ENTER_CM_D2
}
};
/*
* SAF driver configuration.
* One SPI flash device.
* Use QMSPI frequency, chip select timing, and signal sampling configured
* by QMSPI driver.
* Use SAF hardware default TAG map.
*/
static const struct espi_saf_cfg saf_cfg1 = {
.nflash_devices = 1U,
.hwcfg = {
.qmspi_freq_hz = 0U,
.qmspi_cs_timing = 0U,
.qmspi_cpha = 0U,
.flags = 0U,
.generic_descr = {
MCHP_SAF_EXIT_CM_DESCR12, MCHP_SAF_EXIT_CM_DESCR13,
MCHP_SAF_POLL_DESCR14, MCHP_SAF_POLL_DESCR15
},
.tag_map = { 0U, 0U, 0U }
},
.flash_cfgs = (struct espi_saf_flash_cfg *)&flash_w25q128
};
/*
* Example for SAF driver set protection regions API.
*/
static const struct espi_saf_pr w25q128_protect_regions[2] = {
{
.start = 0xe00000U,
.size = 0x100000U,
.master_bm_we = (1U << MCHP_SAF_MSTR_HOST_PCH_ME),
.master_bm_rd = (1U << MCHP_SAF_MSTR_HOST_PCH_ME),
.pr_num = 1U,
.flags = MCHP_SAF_PR_FLAG_ENABLE
| MCHP_SAF_PR_FLAG_LOCK,
},
{
.start = 0xf00000U,
.size = 0x100000U,
.master_bm_we = (1U << MCHP_SAF_MSTR_HOST_PCH_LAN),
.master_bm_rd = (1U << MCHP_SAF_MSTR_HOST_PCH_LAN),
.pr_num = 2U,
.flags = MCHP_SAF_PR_FLAG_ENABLE
| MCHP_SAF_PR_FLAG_LOCK,
},
};
static const struct espi_saf_protection saf_pr_w25q128 = {
.nregions = 2U,
.pregions = w25q128_protect_regions
};
/*
* Initialize the local attached SPI flash.
* 1. Get SPI driver binding
* 2. Read JEDEC ID and verify its a W25Q128
* 3. Read STATUS2 and check QE bit
* 4. If QE bit is not set
* Send volatile status write enable
* Set volatile QE bit
* Check STATUS1 BUSY, not expected to be set for volatile status write.
* Read STATUS2 and check QE
* Returns 0 if QE was already set or this routine successfully set volatile
* QE. Returns < 0 on SPI driver error or unexpected BUSY or STATUS values.
* NOTE: SPI driver transceive API will configure the SPI controller to the
* settings passed in the struct spi_config. We set the frequency to the
* frequency we will be using for SAF.
*/
int spi_saf_init(void)
{
struct spi_config spi_cfg;
struct spi_buf_set tx_bufs;
struct spi_buf_set rx_bufs;
struct spi_buf txb;
struct spi_buf rxb;
uint8_t spi_status1, spi_status2;
uint32_t jedec_id;
int ret;
/* Read JEDEC ID command and fill read buffer */
safbuf[0] = SPI_READ_JEDEC_ID;
memset(safbuf2, 0x55, 4U);
spi_cfg.frequency = SAF_TEST_FREQ_HZ;
spi_cfg.operation = SPI_OP_MODE_MASTER | SPI_TRANSFER_MSB
| SPI_WORD_SET(8) | SPI_LINES_SINGLE;
/*
* Use SPI master mode and inform driver the SPI controller hardware
* controls chip select.
*/
jedec_id = 0U;
spi_cfg.slave = 0;
spi_cfg.cs = NULL;
txb.buf = &safbuf;
txb.len = 1U;
tx_bufs.buffers = (const struct spi_buf *)&txb;
tx_bufs.count = 1U;
rxb.buf = &jedec_id;
rxb.len = 3U;
rx_bufs.buffers = (const struct spi_buf *)&rxb;
rx_bufs.count = 1U;
ret = spi_transceive(qspi_dev, (const struct spi_config *)&spi_cfg,
(const struct spi_buf_set *)&tx_bufs,
(const struct spi_buf_set *)&rx_bufs);
if (ret) {
LOG_ERR("Read JEDEC ID spi_transceive failure: error %d", ret);
return ret;
}
if (jedec_id != W25Q128_JEDEC_ID) {
LOG_ERR("JEDIC ID does not match W25Q128 %0x", safbuf2[0]);
return -1;
}
/* Read STATUS2 to get quad enable bit */
safbuf[0] = SPI_READ_STATUS2;
memset(safbuf2, 0, 4U);
txb.buf = &safbuf;
txb.len = 1U;
tx_bufs.buffers = (const struct spi_buf *)&txb;
tx_bufs.count = 1U;
rxb.buf = &safbuf2;
rxb.len = 1U;
rx_bufs.buffers = (const struct spi_buf *)&rxb;
rx_bufs.count = 1U;
ret = spi_transceive(qspi_dev, (const struct spi_config *)&spi_cfg,
(const struct spi_buf_set *)&tx_bufs,
(const struct spi_buf_set *)&rx_bufs);
if (ret) {
LOG_ERR("Read STATUS2 spi_transceive failure: error %d", ret);
return ret;
}
spi_status2 = safbuf2[0];
/*
* If QE not set then write the volatile QE bit.
* SAF test requires SPI flash quad enabled so the WP#/HOLD# signals
* will act as IO2/IO3. We will write the volatile QE bit for less
* wear of the STATUS2 register
*/
if ((spi_status2 & SPI_STATUS2_QE) == 0U) {
safbuf[0] = SPI_WRITE_ENABLE_VS;
txb.buf = &safbuf;
txb.len = 1U;
tx_bufs.buffers = (const struct spi_buf *)&txb;
tx_bufs.count = 1U;
rx_bufs.buffers = NULL;
rx_bufs.count = 0U;
ret = spi_transceive(qspi_dev,
(const struct spi_config *)&spi_cfg,
(const struct spi_buf_set *)&tx_bufs,
(const struct spi_buf_set *)&rx_bufs);
if (ret) {
LOG_ERR("Send write enable volatile spi_transceive"
" failure: error %d", ret);
return ret;
}
safbuf[0] = SPI_WRITE_STATUS2;
safbuf[1] = spi_status2 | SPI_STATUS2_QE;
txb.buf = &safbuf;
txb.len = 2U;
tx_bufs.buffers = (const struct spi_buf *)&txb;
tx_bufs.count = 1U;
rx_bufs.buffers = NULL;
rx_bufs.count = 0U;
ret = spi_transceive(qspi_dev,
(const struct spi_config *)&spi_cfg,
(const struct spi_buf_set *)&tx_bufs,
(const struct spi_buf_set *)&rx_bufs);
if (ret) {
LOG_ERR("Write SPI STATUS2 QE=1 spi_transceive"
" failure: error %d", ret);
return ret;
}
/* Write to volatile status is fast, expect BUSY to be clear */
safbuf[0] = SPI_READ_STATUS1;
memset(safbuf2, 0, 4U);
txb.buf = &safbuf;
txb.len = 1U;
tx_bufs.buffers = (const struct spi_buf *)&txb;
tx_bufs.count = 1U;
rxb.buf = &safbuf2;
/* read 2 bytes both will be STATUS1 */
rxb.len = 2U;
rx_bufs.buffers = (const struct spi_buf *)&rxb;
rx_bufs.count = 1U;
ret = spi_transceive(qspi_dev,
(const struct spi_config *)&spi_cfg,
(const struct spi_buf_set *)&tx_bufs,
(const struct spi_buf_set *)&rx_bufs);
if (ret) {
LOG_ERR("Read SPI STATUS1 spi_transceive"
" failure: error %d", ret);
return ret;
}
spi_status1 = safbuf2[0];
if (spi_status1 & SPI_STATUS1_BUSY) {
LOG_ERR("SPI BUSY set after write to volatile STATUS2:"
" STATUS1=0x%02X", spi_status1);
return ret;
}
/* Read STATUS2 to make sure QE is set */
safbuf[0] = SPI_READ_STATUS2;
memset(safbuf2, 0, 4U);
txb.buf = &safbuf;
txb.len = 1U;
tx_bufs.buffers = (const struct spi_buf *)&txb;
tx_bufs.count = 1U;
rxb.buf = &safbuf2;
/* read 2 bytes both will be STATUS2 */
rxb.len = 2U;
rx_bufs.buffers = (const struct spi_buf *)&rxb;
rx_bufs.count = 1U;
ret = spi_transceive(qspi_dev,
(const struct spi_config *)&spi_cfg,
(const struct spi_buf_set *)&tx_bufs,
(const struct spi_buf_set *)&rx_bufs);
if (ret) {
LOG_ERR("Read 2 of SPI STATUS2 spi_transceive"
" failure: error %d", ret);
return ret;
}
spi_status2 = safbuf2[0];
if (!(spi_status2 & SPI_STATUS2_QE)) {
LOG_ERR("Read back of SPI STATUS2 after setting "
"volatile QE bit shows QE not set: 0x%02X",
spi_status2);
return -1;
}
}
return 0;
}
int espi_saf_init(void)
{
int ret;
ret = espi_saf_config(espi_saf_dev, (struct espi_saf_cfg *)&saf_cfg1);
if (ret) {
LOG_ERR("Failed to configure eSPI SAF error %d", ret);
} else {
LOG_INF("eSPI SAF configured successfully!");
}
ret = espi_saf_set_protection_regions(espi_saf_dev,
&saf_pr_w25q128);
if (ret) {
LOG_ERR("Failed to set SAF protection region(s) %d", ret);
} else {
LOG_INF("eSPI SAF protection regions(s) configured!");
}
return ret;
}
static int pr_check_range(struct mchp_espi_saf *regs,
const struct espi_saf_pr *pr)
{
uint32_t limit;
limit = pr->start + pr->size - 1U;
/* registers b[19:0] = bits[31:12] (align on 4KB) */
if (regs->SAF_PROT_RG[pr->pr_num].START != (pr->start >> 12)) {
return -1;
}
if (regs->SAF_PROT_RG[pr->pr_num].LIMIT != (limit >> 12)) {
return -1;
}
return 0;
}
static int pr_check_enable(struct mchp_espi_saf *regs,
const struct espi_saf_pr *pr)
{
if (pr->flags & MCHP_SAF_PR_FLAG_ENABLE) {
if (regs->SAF_PROT_RG[pr->pr_num].LIMIT >
regs->SAF_PROT_RG[pr->pr_num].START) {
return 0;
}
} else {
if (regs->SAF_PROT_RG[pr->pr_num].START >
regs->SAF_PROT_RG[pr->pr_num].LIMIT) {
return 0;
}
}
return -2;
}
static int pr_check_lock(struct mchp_espi_saf *regs,
const struct espi_saf_pr *pr)
{
if (pr->flags & MCHP_SAF_PR_FLAG_LOCK) {
if (regs->SAF_PROT_LOCK & BIT(pr->pr_num)) {
return 0;
}
} else {
if (!(regs->SAF_PROT_LOCK & BIT(pr->pr_num))) {
return 0;
}
}
return -3;
}
/*
* NOTE: bit[0] of bit map registers is read-only = 1
*/
static int pr_check_master_bm(struct mchp_espi_saf *regs,
const struct espi_saf_pr *pr)
{
if (regs->SAF_PROT_RG[pr->pr_num].WEBM !=
(pr->master_bm_we | BIT(0))) {
return -4;
}
if (regs->SAF_PROT_RG[pr->pr_num].RDBM !=
(pr->master_bm_rd | BIT(0))) {
return -4;
}
return 0;
}
static int espi_saf_test_pr1(const struct espi_saf_protection *spr)
{
struct mchp_espi_saf *saf_regs;
const struct espi_saf_pr *pr;
int rc;
LOG_INF("espi_saf_test_pr1");
if (spr == NULL) {
return 0;
}
saf_regs = (struct mchp_espi_saf *)(SAF_BASE_ADDR);
pr = spr->pregions;
for (size_t n = 0U; n < spr->nregions; n++) {
rc = pr_check_range(saf_regs, pr);
if (rc) {
LOG_INF("SAF Protection region %u range fail",
pr->pr_num);
return rc;
}
rc = pr_check_enable(saf_regs, pr);
if (rc) {
LOG_INF("SAF Protection region %u enable fail",
pr->pr_num);
return rc;
}
rc = pr_check_lock(saf_regs, pr);
if (rc) {
LOG_INF("SAF Protection region %u lock check fail",
pr->pr_num);
return rc;
}
rc = pr_check_master_bm(saf_regs, pr);
if (rc) {
LOG_INF("SAF Protection region %u Master select fail",
pr->pr_num);
return rc;
}
pr++;
}
return 0;
}
/*
* SAF hardware limited to 1 to 64 byte read requests.
*/
static int saf_read(uint32_t spi_addr, uint8_t *dest, int len)
{
int rc, chunk_len, n;
struct espi_saf_packet saf_pkt = { 0 };
if ((dest == NULL) || (len < 0)) {
return -EINVAL;
}
saf_pkt.flash_addr = spi_addr;
saf_pkt.buf = dest;
n = len;
while (n) {
chunk_len = 64;
if (n < 64) {
chunk_len = n;
}
saf_pkt.len = chunk_len;
rc = espi_saf_flash_read(espi_saf_dev, &saf_pkt);
if (rc != 0) {
LOG_INF("%s: error = %d: chunk_len = %d "
"spi_addr = %x", __func__, rc, chunk_len,
spi_addr);
return rc;
}
saf_pkt.flash_addr += chunk_len;
saf_pkt.buf += chunk_len;
n -= chunk_len;
}
return len;
}
/*
* SAF hardware limited to 4KB(mandatory), 32KB, and 64KB erase sizes.
* eSPI configuration has flags the Host can read specifying supported
* erase sizes.
*/
static int saf_erase_block(uint32_t spi_addr, enum saf_erase_size ersz)
{
int rc;
struct espi_saf_packet saf_pkt = { 0 };
switch (ersz) {
case SAF_ERASE_4K:
saf_pkt.len = 4096U;
spi_addr &= ~(4096U - 1U);
break;
case SAF_ERASE_32K:
saf_pkt.len = (32U * 1024U);
spi_addr &= ~((32U * 1024U) - 1U);
break;
case SAF_ERASE_64K:
saf_pkt.len = (64U * 1024U);
spi_addr &= ~((64U * 1024U) - 1U);
break;
default:
return -EINVAL;
}
saf_pkt.flash_addr = spi_addr;
rc = espi_saf_flash_erase(espi_saf_dev, &saf_pkt);
if (rc != 0) {
LOG_INF("espi_saf_test1: erase fail = %d", rc);
return rc;
}
return 0;
}
/*
* SAF hardware limited to 1 to 64 byte programming within a 256 byte page.
*/
static int saf_page_prog(uint32_t spi_addr, const uint8_t *src, int progsz)
{
int rc, chunk_len, n;
struct espi_saf_packet saf_pkt = { 0 };
if ((src == NULL) || (progsz < 0) || (progsz > 256)) {
return -EINVAL;
}
if (progsz == 0) {
return 0;
}
saf_pkt.flash_addr = spi_addr;
saf_pkt.buf = (uint8_t *)src;
n = progsz;
while (n) {
chunk_len = 64;
if (n < 64) {
chunk_len = n;
}
saf_pkt.len = (uint32_t)chunk_len;
rc = espi_saf_flash_write(espi_saf_dev, &saf_pkt);
if (rc != 0) {
LOG_INF("%s: error = %d: erase fail spi_addr = 0x%X",
__func__, rc, spi_addr);
return rc;
}
saf_pkt.flash_addr += chunk_len;
saf_pkt.buf += chunk_len;
n -= chunk_len;
}
return progsz;
}
int espi_saf_test1(uint32_t spi_addr)
{
int rc, retries;
bool erased;
uint32_t n, saddr, progsz, chunksz;
rc = espi_saf_activate(espi_saf_dev);
LOG_INF("%s: activate = %d", __func__, rc);
if (spi_addr & 0xfffU) {
LOG_INF("%s: SPI address 0x%08x not 4KB aligned", __func__,
spi_addr);
spi_addr &= ~(4096U-1U);
LOG_INF("%s: Aligned SPI address to 0x%08x", __func__,
spi_addr);
}
memset(safbuf, 0x55, sizeof(safbuf));
memset(safbuf2, 0, sizeof(safbuf2));
erased = false;
retries = 3;
while (!erased && (retries-- > 0)) {
/* read 4KB sector at 0 */
rc = saf_read(spi_addr, safbuf, 4096);
if (rc != 4096) {
LOG_INF("%s: error=%d Read 4K sector at 0x%X failed",
__func__, rc, spi_addr);
return rc;
}
rc = 0;
for (n = 0; n < 4096U; n++) {
if (safbuf[n] != 0xffUL) {
rc = -1;
break;
}
}
if (rc == 0) {
LOG_INF("4KB sector at 0x%x is in erased state. "
"Continue tests", spi_addr);
erased = true;
} else {
LOG_INF("4KB sector at 0x%x not in erased state. "
"Send 4K erase.", spi_addr);
rc = saf_erase_block(spi_addr, SAF_ERASE_4K);
if (rc != 0) {
LOG_INF("SAF erase block at 0x%x returned "
"error %d", spi_addr, rc);
return rc;
}
}
}
if (!erased) {
LOG_INF("%s: Could not erase 4KB sector at 0x%08x",
__func__, spi_addr);
return -1;
}
/*
* Page program test pattern every 256 bytes = 0,1,...,255
*/
for (n = 0; n < 4096U; n++) {
safbuf[n] = n % 256U;
}
/* SPI flash sector erase size is 4KB, page program is 256 bytes */
progsz = 4096U;
chunksz = 256U;
saddr = spi_addr;
n = 0;
const uint8_t *src = (const uint8_t *)safbuf;
LOG_INF("%s: Program 4KB sector at 0x%X", __func__, saddr);
while (n < progsz) {
rc = saf_page_prog(saddr, (const uint8_t *)src,
(int)chunksz);
if (rc != chunksz) {
LOG_INF("saf_page_prog error=%d at 0x%X", rc,
saddr);
break;
}
saddr += chunksz;
n += chunksz;
src += chunksz;
}
/* read back and check */
LOG_INF("%s: Read back 4K sector at 0x%X", __func__, spi_addr);
rc = saf_read(spi_addr, safbuf2, progsz);
if (rc == progsz) {
rc = memcmp(safbuf, safbuf2, progsz);
if (rc == 0) {
LOG_INF("%s: Read back match: PASS", __func__);
} else {
LOG_INF("%s: Read back mismatch: FAIL", __func__);
}
} else {
LOG_INF("%s: Read back 4K error=%d", __func__, rc);
return rc;
}
return rc;
}
#endif /* #ifdef CONFIG_ESPI_SAF */
static void host_warn_handler(uint32_t signal, uint32_t status)
{
switch (signal) {
@ -519,6 +1232,20 @@ int espi_test(void)
return -1;
}
#ifdef CONFIG_ESPI_SAF
qspi_dev = device_get_binding(SPI_DEV);
if (!qspi_dev) {
LOG_WRN("Fail to find %s", SPI_DEV);
return -1;
}
espi_saf_dev = device_get_binding(ESPI_SAF_DEV);
if (!espi_saf_dev) {
LOG_WRN("Fail to find %s", ESPI_SAF_DEV);
return -1;
}
#endif
LOG_INF("Hello eSPI test %s", CONFIG_BOARD);
#if DT_NODE_HAS_STATUS(BRD_PWR_NODE, okay)
@ -548,6 +1275,36 @@ int espi_test(void)
espi_init();
#ifdef CONFIG_ESPI_SAF
/*
* eSPI SAF configuration must be after eSPI configuration.
* eSPI SAF EC portal flash tests before EC releases RSMRST# and
* Host de-asserts ESPI_RESET#.
*/
ret = spi_saf_init();
if (ret) {
LOG_ERR("Unable to configure %d:%s", ret, SPI_DEV);
return ret;
}
ret = espi_saf_init();
if (ret) {
LOG_ERR("Unable to configure %d:%s", ret, ESPI_SAF_DEV);
return ret;
}
ret = espi_saf_test_pr1(&saf_pr_w25q128);
if (ret) {
LOG_INF("eSPI SAF test pr1 returned error %d", ret);
}
ret = espi_saf_test1(SAF_SPI_TEST_ADDRESS);
if (ret) {
LOG_INF("eSPI SAF test1 returned error %d", ret);
}
#endif
#if DT_NODE_HAS_STATUS(BRD_PWR_NODE, okay)
ret = wait_for_pin(pwrgd_dev, BRD_PWR_PWRGD_PIN,
PWR_SEQ_TIMEOUT, 1);