samples: bluetooth: adding hci_rpmsg sample

This commit contributes a BLE HCI-over-RPMsg sample.

Co-authored-by: Kamil Piszczek <Kamil.Piszczek@nordicsemi.no>
Co-authored-by: Nikodem Kastelik <nikodem.kastelik@nordicsemi.no>

Signed-off-by: Kamil Piszczek <Kamil.Piszczek@nordicsemi.no>
This commit is contained in:
Kamil Piszczek 2019-11-15 11:34:57 +01:00 committed by Carles Cufí
parent d67416321e
commit 50ebde1c8b
5 changed files with 549 additions and 0 deletions

View file

@ -0,0 +1,8 @@
# SPDX-License-Identifier: Apache-2.0
cmake_minimum_required(VERSION 3.13.1)
include($ENV{ZEPHYR_BASE}/cmake/app/boilerplate.cmake NO_POLICY_SCOPE)
project(hci_rpmsg)
target_sources(app PRIVATE src/main.c)

View file

@ -0,0 +1,40 @@
.. _bluetooth-hci-rpmsg-sample:
Bluetooth: HCI RPMsg
####################
Overview
********
This sample exposes :ref:`bluetooth_controller` support
to another device or CPU using RPMsg transport which is
a part of `OpenAMP <https://github.com/OpenAMP/open-amp/>`__.
Requirements
************
* A board with :ref:`ipm_interface` driver and Bluetooth LE support
Building and Running
********************
This sample can be found under :zephyr_file:`samples/bluetooth/hci_rpmsg`
in the Zephyr tree.
To use this application, you need a board with a Bluetooth controller
and IPM drivers.
You can then build this application and flash it onto your board in
the usual way. See :ref:`boards` for board-specific building and
programming information.
To test this sample, you need a separate device/CPU that acts as Bluetooth
HCI RPMsg peer.
This sample is compatible with the HCI RPMsg driver provided by
Zephyr's Bluetooth :ref:`bt_hci_drivers` core. See the
:option:`CONFIG_BT_RPMSG` configuration option for more information.
You might need to adjust the Kconfig configuration of this sample to make it
compatible with the peer application. For example, :option:`CONFIG_BT_MAX_CONN`
must be equal to the maximum number of connections supported by the peer application.
Refer to :ref:`bluetooth-samples` for general information about Bluetooth samples.

View file

@ -0,0 +1,20 @@
CONFIG_LOG=y
CONFIG_OPENAMP=y
CONFIG_IPM=y
CONFIG_IPM_NRFX=y
CONFIG_IPM_MSG_CH_1_ENABLE=y
CONFIG_IPM_MSG_CH_1_TX=y
CONFIG_IPM_MSG_CH_0_ENABLE=y
CONFIG_IPM_MSG_CH_0_RX=y
CONFIG_HEAP_MEM_POOL_SIZE=8192
CONFIG_MAIN_STACK_SIZE=512
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE=512
CONFIG_BT=y
CONFIG_BT_HCI_RAW=y
CONFIG_BT_MAX_CONN=16
CONFIG_BT_CTLR_ASSERT_HANDLER=y
CONFIG_BT_HCI_RAW_RESERVE=1

View file

@ -0,0 +1,9 @@
sample:
description: Allows Zephyr to provide Bluetooth connectivity
via RPMsg.
name: Bluetooth HCI RPMsg
tests:
sample.bluetooth.hci_rpmsg:
harness: bluetooth
platform_whitelist: nrf5340_dk_nrf5340_cpunet
tags: bluetooth

View file

@ -0,0 +1,472 @@
/*
* Copyright (c) 2019 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <zephyr.h>
#include <arch/cpu.h>
#include <sys/byteorder.h>
#include <logging/log.h>
#include <sys/util.h>
#include <ipm.h>
#include <openamp/open_amp.h>
#include <metal/sys.h>
#include <metal/device.h>
#include <metal/alloc.h>
#include <net/buf.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/l2cap.h>
#include <bluetooth/hci.h>
#include <bluetooth/buf.h>
#include <bluetooth/hci_raw.h>
#define LOG_LEVEL LOG_LEVEL_INFO
#define LOG_MODULE_NAME hci_rpmsg
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
/* Configuration defines */
#define SHM_START_ADDR (DT_IPC_SHM_BASE_ADDRESS + 0x400)
#define SHM_SIZE 0x7c00
#define SHM_DEVICE_NAME "sram0.shm"
#define VRING_COUNT 2
#define VRING_TX_ADDRESS (SHM_START_ADDR + SHM_SIZE - 0x400)
#define VRING_RX_ADDRESS (VRING_TX_ADDRESS - 0x400)
#define VRING_ALIGNMENT 4
#define VRING_SIZE 16
#define VDEV_STATUS_ADDR DT_IPC_SHM_BASE_ADDRESS
/* End of configuration defines */
static struct device *ipm_tx_handle;
static struct device *ipm_rx_handle;
static metal_phys_addr_t shm_physmap[] = { SHM_START_ADDR };
static struct metal_device shm_device = {
.name = SHM_DEVICE_NAME,
.bus = NULL,
.num_regions = 1,
.regions = {
{
.virt = (void *) SHM_START_ADDR,
.physmap = shm_physmap,
.size = SHM_SIZE,
.page_shift = 0xffffffff,
.page_mask = 0xffffffff,
.mem_flags = 0,
.ops = { NULL },
},
},
.node = { NULL },
.irq_num = 0,
.irq_info = NULL
};
static struct virtqueue *vq[2];
static struct rpmsg_endpoint ep;
static struct k_work ipm_work;
static unsigned char virtio_get_status(struct virtio_device *vdev)
{
return sys_read8(VDEV_STATUS_ADDR);
}
static u32_t virtio_get_features(struct virtio_device *vdev)
{
return BIT(VIRTIO_RPMSG_F_NS);
}
static void virtio_set_status(struct virtio_device *vdev, unsigned char status)
{
sys_write8(status, VDEV_STATUS_ADDR);
}
static void virtio_notify(struct virtqueue *vq)
{
int status;
status = ipm_send(ipm_tx_handle, 0, 0, NULL, 0);
if (status != 0) {
LOG_ERR("ipm_send failed to notify: %d", status);
}
}
const struct virtio_dispatch dispatch = {
.get_status = virtio_get_status,
.set_status = virtio_set_status,
.get_features = virtio_get_features,
.notify = virtio_notify,
};
static void ipm_callback_process(struct k_work *work)
{
virtqueue_notification(vq[1]);
}
static void ipm_callback(void *context, u32_t id, volatile void *data)
{
LOG_INF("Got callback of id %u", id);
k_work_submit(&ipm_work);
}
static void rpmsg_service_unbind(struct rpmsg_endpoint *ep)
{
rpmsg_destroy_ept(ep);
}
static K_THREAD_STACK_DEFINE(tx_thread_stack, CONFIG_BT_HCI_TX_STACK_SIZE);
static struct k_thread tx_thread_data;
/* HCI command buffers */
#define CMD_BUF_SIZE BT_BUF_RX_SIZE
NET_BUF_POOL_DEFINE(cmd_tx_pool, CONFIG_BT_HCI_CMD_COUNT, CMD_BUF_SIZE,
BT_BUF_USER_DATA_MIN, NULL);
#if defined(CONFIG_BT_CTLR_TX_BUFFER_SIZE)
#define BT_L2CAP_MTU (CONFIG_BT_CTLR_TX_BUFFER_SIZE - BT_L2CAP_HDR_SIZE)
#else
#define BT_L2CAP_MTU 65 /* 64-byte public key + opcode */
#endif /* CONFIG_BT_CTLR */
/** Data size needed for ACL buffers */
#define BT_BUF_ACL_SIZE BT_L2CAP_BUF_SIZE(BT_L2CAP_MTU)
#if defined(CONFIG_BT_CTLR_TX_BUFFERS)
#define TX_BUF_COUNT CONFIG_BT_CTLR_TX_BUFFERS
#else
#define TX_BUF_COUNT 6
#endif
NET_BUF_POOL_DEFINE(acl_tx_pool, TX_BUF_COUNT, BT_BUF_ACL_SIZE,
BT_BUF_USER_DATA_MIN, NULL);
static K_FIFO_DEFINE(tx_queue);
#define HCI_RPMSG_CMD 0x01
#define HCI_RPMSG_ACL 0x02
#define HCI_RPMSG_SCO 0x03
#define HCI_RPMSG_EVT 0x04
static struct net_buf *hci_rpmsg_cmd_recv(u8_t *data, size_t remaining)
{
struct bt_hci_cmd_hdr hdr;
struct net_buf *buf;
if (remaining < sizeof(hdr)) {
LOG_ERR("Not enought data for command header");
return NULL;
}
buf = net_buf_alloc(&cmd_tx_pool, K_NO_WAIT);
if (buf) {
bt_buf_set_type(buf, BT_BUF_CMD);
memcpy((void *)&hdr, data, sizeof(hdr));
data += sizeof(hdr);
remaining -= sizeof(hdr);
net_buf_add_mem(buf, &hdr, sizeof(hdr));
} else {
LOG_ERR("No available command buffers!");
return NULL;
}
if (remaining != hdr.param_len) {
LOG_ERR("Command payload length is not correct");
net_buf_unref(buf);
return NULL;
}
LOG_DBG("len %u", hdr.param_len);
net_buf_add_mem(buf, data, remaining);
return buf;
}
static struct net_buf *hci_rpmsg_acl_recv(u8_t *data, size_t remaining)
{
struct bt_hci_acl_hdr hdr;
struct net_buf *buf;
if (remaining < sizeof(hdr)) {
LOG_ERR("Not enought data for ACL header");
return NULL;
}
buf = net_buf_alloc(&acl_tx_pool, K_NO_WAIT);
if (buf) {
bt_buf_set_type(buf, BT_BUF_ACL_OUT);
memcpy((void *)&hdr, data, sizeof(hdr));
data += sizeof(hdr);
remaining -= sizeof(hdr);
net_buf_add_mem(buf, &hdr, sizeof(hdr));
} else {
LOG_ERR("No available ACL buffers!");
return NULL;
}
if (remaining != sys_le16_to_cpu(hdr.len)) {
LOG_ERR("ACL payload length is not correct");
net_buf_unref(buf);
return NULL;
}
LOG_DBG("len %u", remaining);
net_buf_add_mem(buf, data, remaining);
return buf;
}
static void hci_rpmsg_rx(u8_t *data, size_t len)
{
u8_t pkt_indicator;
struct net_buf *buf = NULL;
size_t remaining = len;
LOG_HEXDUMP_DBG(data, len, "RPMSG data:");
pkt_indicator = *data++;
remaining -= sizeof(pkt_indicator);
switch (pkt_indicator) {
case HCI_RPMSG_CMD:
buf = hci_rpmsg_cmd_recv(data, remaining);
break;
case HCI_RPMSG_ACL:
buf = hci_rpmsg_acl_recv(data, remaining);
break;
default:
LOG_ERR("Unknown HCI type %u", pkt_indicator);
return;
}
if (buf) {
net_buf_put(&tx_queue, buf);
LOG_HEXDUMP_DBG(buf->data, buf->len, "Final net buffer:");
}
}
static void tx_thread(void *p1, void *p2, void *p3)
{
while (1) {
struct net_buf *buf;
int err;
/* Wait until a buffer is available */
buf = net_buf_get(&tx_queue, K_FOREVER);
/* Pass buffer to the stack */
err = bt_send(buf);
if (err) {
LOG_ERR("Unable to send (err %d)", err);
net_buf_unref(buf);
}
/* Give other threads a chance to run if tx_queue keeps getting
* new data all the time.
*/
k_yield();
}
}
static int hci_rpmsg_send(struct net_buf *buf)
{
u8_t pkt_indicator;
LOG_DBG("buf %p type %u len %u", buf, bt_buf_get_type(buf),
buf->len);
LOG_HEXDUMP_DBG(buf->data, buf->len, "Controller buffer:");
switch (bt_buf_get_type(buf)) {
case BT_BUF_ACL_IN:
pkt_indicator = HCI_RPMSG_ACL;
break;
case BT_BUF_EVT:
pkt_indicator = HCI_RPMSG_EVT;
break;
default:
LOG_ERR("Unknown type %u", bt_buf_get_type(buf));
net_buf_unref(buf);
return -EINVAL;
}
net_buf_push_u8(buf, pkt_indicator);
LOG_HEXDUMP_DBG(buf->data, buf->len, "Final HCI buffer:");
rpmsg_send(&ep, buf->data, buf->len);
net_buf_unref(buf);
return 0;
}
#if defined(CONFIG_BT_CTLR_ASSERT_HANDLER)
void bt_ctlr_assert_handle(char *file, u32_t line)
{
LOG_ERR("Controller assert in: %s at %d", file, line);
}
#endif /* CONFIG_BT_CTLR_ASSERT_HANDLER */
int endpoint_cb(struct rpmsg_endpoint *ept, void *data, size_t len, u32_t src,
void *priv)
{
LOG_INF("Received message of %u bytes.", len);
hci_rpmsg_rx((u8_t *) data, len);
return RPMSG_SUCCESS;
}
static int hci_rpmsg_init(void)
{
int err;
struct metal_init_params metal_params = METAL_INIT_DEFAULTS;
static struct virtio_vring_info rvrings[2];
static struct virtio_device vdev;
static struct rpmsg_device *rdev;
static struct rpmsg_virtio_device rvdev;
static struct metal_io_region *io;
static struct metal_device *device;
/* Setup IPM workqueue item */
k_work_init(&ipm_work, ipm_callback_process);
/* Libmetal setup */
err = metal_init(&metal_params);
if (err) {
LOG_ERR("metal_init: failed - error code %d", err);
return err;
}
err = metal_register_generic_device(&shm_device);
if (err) {
LOG_ERR("Couldn't register shared memory device: %d", err);
return err;
}
err = metal_device_open("generic", SHM_DEVICE_NAME, &device);
if (err) {
LOG_ERR("metal_device_open failed: %d", err);
return err;
}
io = metal_device_io_region(device, 0);
if (!io) {
LOG_ERR("metal_device_io_region failed to get region");
return -ENODEV;
}
/* IPM setup */
ipm_tx_handle = device_get_binding("IPM_1");
if (!ipm_tx_handle) {
LOG_ERR("Could not get TX IPM device handle");
return -ENODEV;
}
ipm_rx_handle = device_get_binding("IPM_0");
if (!ipm_rx_handle) {
LOG_ERR("Could not get RX IPM device handle");
return -ENODEV;
}
ipm_register_callback(ipm_rx_handle, ipm_callback, NULL);
vq[0] = virtqueue_allocate(VRING_SIZE);
if (!vq[0]) {
LOG_ERR("virtqueue_allocate failed to alloc vq[0]");
return -ENOMEM;
}
vq[1] = virtqueue_allocate(VRING_SIZE);
if (!vq[1]) {
LOG_ERR("virtqueue_allocate failed to alloc vq[1]");
return -ENOMEM;
}
rvrings[0].io = io;
rvrings[0].info.vaddr = (void *)VRING_TX_ADDRESS;
rvrings[0].info.num_descs = VRING_SIZE;
rvrings[0].info.align = VRING_ALIGNMENT;
rvrings[0].vq = vq[0];
rvrings[1].io = io;
rvrings[1].info.vaddr = (void *)VRING_RX_ADDRESS;
rvrings[1].info.num_descs = VRING_SIZE;
rvrings[1].info.align = VRING_ALIGNMENT;
rvrings[1].vq = vq[1];
vdev.role = RPMSG_REMOTE;
vdev.vrings_num = VRING_COUNT;
vdev.func = &dispatch;
vdev.vrings_info = &rvrings[0];
/* setup rvdev */
err = rpmsg_init_vdev(&rvdev, &vdev, NULL, io, NULL);
if (err) {
LOG_ERR("rpmsg_init_vdev failed %d", err);
return err;
}
rdev = rpmsg_virtio_get_rpmsg_device(&rvdev);
err = rpmsg_create_ept(&ep, rdev, "bt_hci", RPMSG_ADDR_ANY,
RPMSG_ADDR_ANY, endpoint_cb,
rpmsg_service_unbind);
if (err) {
LOG_ERR("rpmsg_create_ept failed %d", err);
return err;
}
return err;
}
void main(void)
{
int err;
/* incoming events and data from the controller */
static K_FIFO_DEFINE(rx_queue);
/* initialize RPMSG */
err = hci_rpmsg_init();
if (err != 0) {
return;
}
LOG_DBG("Start");
/* Enable the raw interface, this will in turn open the HCI driver */
bt_enable_raw(&rx_queue);
/* Spawn the TX thread and start feeding commands and data to the
* controller
*/
k_thread_create(&tx_thread_data, tx_thread_stack,
K_THREAD_STACK_SIZEOF(tx_thread_stack), tx_thread,
NULL, NULL, NULL, K_PRIO_COOP(7), 0, K_NO_WAIT);
while (1) {
struct net_buf *buf;
buf = net_buf_get(&rx_queue, K_FOREVER);
err = hci_rpmsg_send(buf);
if (err) {
LOG_ERR("Failed to send (err %d)", err);
}
}
}