intel_s1000: tests: introduce tests to check features enabled

This patchset carries out basic tests on the features supported
on intel_s1000. Currently, Interrupt mechanism, GPIO handling, I2C
communication and UART prints are illustrated.

Change-Id: I7ea03b5085b7fa8d29635c294038536465a70660
Signed-off-by: Rajavardhan Gundi <rajavardhan.gundi@intel.com>
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
This commit is contained in:
Rajavardhan Gundi 2017-11-03 11:48:09 +05:30 committed by Anas Nashif
parent dadf9e7a81
commit 567482ff35
7 changed files with 427 additions and 0 deletions

View file

@ -0,0 +1,5 @@
include($ENV{ZEPHYR_BASE}/cmake/app/boilerplate.cmake NO_POLICY_SCOPE)
project(NONE)
FILE(GLOB app_sources src/*.c)
target_sources(app PRIVATE ${app_sources})

View file

@ -0,0 +1,65 @@
Title: Intel_S1000 tests
Description:
This test illustrates the various features enabled on Intel_S1000.
Features exhibited in this test set
============================
GPIO toggling
- GPIO_23 configured as input
- GPIO_24 configured as output and interrupt capable
- GPIO_23 and GPIO_24 are shorted
- Upon toggling GPIO_23, GPIO_24 also changes state appropriately and
also calls its callback function if interrupt is configured
I2C slave communication
- Intel_S1000 I2C configured as master, 7 bit mode, standard speed
- 2 LED matrices are configured as slaves
- The LED matrices are written over I2C to emit blue light and red
light alternately
- Read functionality verified by reading LED0 after every write and
dumping the result on to the console
Interrupt handling
- All peripheral interrupts are enabled by default
- Each peripheral interrupt can be disabled by calling irq_disable().
For e.g. GPIO IRQ can be disabled by calling "irq_disable(GPIO_DW_0_IRQ);"
UART prints
- Displays the various prints dumped to the console by the above modules
---------------------------------------------------------------------------
Building and Running Project:
This project outputs to the console. It can be built and executed
on Intel_S1000 using the flyswatter2 as follows:
make flash
---------------------------------------------------------------------------
Troubleshooting:
Problems caused by out-dated project information can be addressed by
issuing one of the following commands then rebuilding the project:
make clean # discard results of previous builds
# but keep existing configuration info
or
make pristine # discard results of previous builds
# and restore pre-defined configuration info
---------------------------------------------------------------------------
Sample Output:
***** BOOTING ZEPHYR OS v1.9.99-intel_internal - BUILD: Oct 31 2017 14:48:57 *****
Sample app running on: xtensa Intel_S1000
Reading GPIO_24 = 0
LED0 = 10
GPIO_24 triggered
Reading GPIO_24 = 1
LED0 = 41

View file

View file

@ -0,0 +1,140 @@
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file Sample app to utilize GPIO on Intel_S1000.
*
* Intel_S1000 - Xtensa
* --------------------
*
* The gpio_dw driver is being used.
*
* This sample app toggles GPIO_23. It also waits for
* GPIO_24 to go high and display a message.
*
* If GPIOs 23 and 24 are connected together, the GPIO should
* triggers every 1 second. And you should see this repeatedly
* on console:
* "
* Reading GPIO_24 = 0
* GPIO_24 triggered
* Reading GPIO_24 = 1
* "
*/
#include <zephyr.h>
#include <misc/printk.h>
#include <device.h>
#include <gpio.h>
#define GPIO_OUT_PIN 23
#define GPIO_INT_PIN 24
#define GPIO_NAME "GPIO_"
#define GPIO_DRV_NAME CONFIG_GPIO_DW_0_NAME
/* size of stack area used by each thread */
#define STACKSIZE 1024
/* scheduling priority used by each thread */
#define PRIORITY 7
/* delay between greetings (in ms) */
#define SLEEPTIME 500
extern struct k_sem thread_sem;
void gpio_test_callback(struct device *port,
struct gpio_callback *cb, u32_t pins)
{
printk(GPIO_NAME "%d triggered\n", GPIO_INT_PIN);
}
static struct gpio_callback gpio_cb;
void setup_gpio(struct device *gpio_dev)
{
int ret;
/* Setup GPIO output */
ret = gpio_pin_configure(gpio_dev, GPIO_OUT_PIN, (GPIO_DIR_OUT));
if (ret) {
printk("Error configuring " GPIO_NAME "%d!\n", GPIO_OUT_PIN);
}
/* Setup GPIO input, and triggers on rising edge. */
ret = gpio_pin_configure(gpio_dev, GPIO_INT_PIN,
(GPIO_DIR_IN | GPIO_INT |
GPIO_INT_EDGE | GPIO_INT_ACTIVE_HIGH |
GPIO_INT_DEBOUNCE));
if (ret) {
printk("Error configuring " GPIO_NAME "%d!\n", GPIO_INT_PIN);
}
gpio_init_callback(&gpio_cb, gpio_test_callback, BIT(GPIO_INT_PIN));
ret = gpio_add_callback(gpio_dev, &gpio_cb);
if (ret) {
printk("Cannot setup callback!\n");
}
ret = gpio_pin_enable_callback(gpio_dev, GPIO_INT_PIN);
if (ret) {
printk("Error enabling callback!\n");
}
/* Disable the GPIO interrupt. It is enabled by default */
/* irq_disable(GPIO_DW_0_IRQ); */
}
/* gpio_thread is a static thread that is spawned automatically */
void gpio_thread(void *dummy1, void *dummy2, void *dummy3)
{
struct device *gpio_dev;
int ret;
int toggle = 1;
u32_t read_val = 0;
ARG_UNUSED(dummy1);
ARG_UNUSED(dummy2);
ARG_UNUSED(dummy3);
gpio_dev = device_get_binding(GPIO_DRV_NAME);
if (!gpio_dev) {
printk("Cannot find %s!\n", GPIO_DRV_NAME);
return;
}
setup_gpio(gpio_dev);
while (1) {
/* take semaphore */
k_sem_take(&thread_sem, K_FOREVER);
if (toggle) {
toggle = 0;
} else {
toggle = 1;
}
ret = gpio_pin_write(gpio_dev, GPIO_OUT_PIN, toggle);
if (ret) {
printk("Error set " GPIO_NAME "%d!\n", GPIO_OUT_PIN);
}
gpio_pin_read(gpio_dev, GPIO_INT_PIN, &read_val);
printk("Reading "GPIO_NAME"%d = %d\n", GPIO_INT_PIN, read_val);
/* let other threads have a turn */
k_sem_give(&thread_sem);
/* wait a while */
k_sleep(SLEEPTIME);
}
}
K_THREAD_DEFINE(gpio_thread_id, STACKSIZE, gpio_thread, NULL, NULL, NULL,
PRIORITY, 0, K_NO_WAIT);

View file

@ -0,0 +1,147 @@
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file Sample app to illustrate i2c master-slave communication on Intel_S1000.
*
* Intel_S1000 - Xtensa
* --------------------
*
* The i2c_dw driver is being used.
*
* In this sample app, the Intel_S1000 master I2C communicates with 2 slave
* LED I2C matrices driving them to emit blue light and red light alternately.
* While this validates the write functionality, the read functionality is
* verified by reading the LED0 values after each write. It would display
* the below message repeatedly on the console every 500ms.
*
* "
* Reading LED_0 = 41
* Reading LED_0 = 10
* "
*/
#include <zephyr.h>
#include <misc/printk.h>
#include <device.h>
#include <i2c.h>
#define I2C_DEV CONFIG_I2C_0_NAME
#define I2C_ADDR_LED_MAT0 0x65
#define I2C_ADDR_LED_MAT1 0x69
#define LED0 0x02
#define LED1 0x03
#define LED2 0x04
#define LED3 0x05
#define LED4 0x06
#define LED5 0x07
/* size of stack area used by each thread */
#define STACKSIZE 1024
/* scheduling priority used by each thread */
#define PRIORITY 7
/* delay between greetings (in ms) */
#define SLEEPTIME 500
extern struct k_sem thread_sem;
void test_i2c_write_led(struct device *i2c_dev, u16_t i2c_slave_led, u8_t color)
{
int ret;
int led_val[6];
switch (color) {
case 0: /* RED color LED */
led_val[0] = 0x10;
led_val[1] = 0x04;
led_val[2] = 0x41;
led_val[3] = 0x10;
led_val[4] = 0x04;
led_val[5] = 0x41;
break;
case 1: /* BLUE color LED */
led_val[0] = 0x41;
led_val[1] = 0x10;
led_val[2] = 0x04;
led_val[3] = 0x41;
led_val[4] = 0x10;
led_val[5] = 0x04;
break;
default:
break;
}
ret = i2c_reg_write_byte(i2c_dev, i2c_slave_led, 0x40, 0xFF);
ret |= i2c_reg_write_byte(i2c_dev, i2c_slave_led, LED0, led_val[0]);
ret |= i2c_reg_write_byte(i2c_dev, i2c_slave_led, LED1, led_val[1]);
ret |= i2c_reg_write_byte(i2c_dev, i2c_slave_led, LED2, led_val[2]);
ret |= i2c_reg_write_byte(i2c_dev, i2c_slave_led, LED3, led_val[3]);
ret |= i2c_reg_write_byte(i2c_dev, i2c_slave_led, LED4, led_val[4]);
ret |= i2c_reg_write_byte(i2c_dev, i2c_slave_led, LED5, led_val[5]);
if (ret) {
printk("Error writing to LED!\n");
return;
}
}
void test_i2c_read_led(struct device *i2c_dev, u16_t i2c_slave_led)
{
int ret;
u8_t data = 0;
ret = i2c_reg_read_byte(i2c_dev, i2c_slave_led, LED0, &data);
if (ret) {
printk("Error reading from LED! error code (%d)\n", ret);
return;
}
printk("LED0 = %x\n", data);
}
/* i2c_thread is a static thread that is spawned automatically */
void i2c_thread(void *dummy1, void *dummy2, void *dummy3)
{
struct device *i2c_dev;
int toggle = 1;
ARG_UNUSED(dummy1);
ARG_UNUSED(dummy2);
ARG_UNUSED(dummy3);
i2c_dev = device_get_binding(I2C_DEV);
if (!i2c_dev) {
printk("I2C: Device driver not found.\n");
return;
}
while (1) {
/* take semaphore */
k_sem_take(&thread_sem, K_FOREVER);
if (toggle) {
toggle = 0;
} else {
toggle = 1;
}
test_i2c_write_led(i2c_dev, I2C_ADDR_LED_MAT0, toggle);
test_i2c_write_led(i2c_dev, I2C_ADDR_LED_MAT1, toggle);
test_i2c_read_led(i2c_dev, I2C_ADDR_LED_MAT0);
/* let other threads have a turn */
k_sem_give(&thread_sem);
/* wait a while */
k_sleep(SLEEPTIME);
}
}
K_THREAD_DEFINE(i2c_thread_id, STACKSIZE, i2c_thread, NULL, NULL, NULL,
PRIORITY, 0, K_NO_WAIT);

View file

@ -0,0 +1,66 @@
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr.h>
#include <misc/printk.h>
#define IOMUX_BASE 0x00081C00
#define IOMUX_CONTROL0 (IOMUX_BASE + 0x30)
#define IOMUX_CONTROL2 (IOMUX_BASE + 0x38)
#define TS_POWER_CONFIG 0x00071F90
/* This semaphore is used to serialize the UART prints dumped by various
* modules. This prevents mixing of UART prints across modules. This
* semaphore starts off "available".
*/
K_SEM_DEFINE(thread_sem, 1, 1);
/* Disable Tensilica power gating */
void disable_ts_powergate(void)
{
volatile u16_t pwrcfg = *(volatile u16_t *)TS_POWER_CONFIG;
/* Set the below bits to disable power gating:
* BIT0 - Tensilica Core Prevent DSP Core Power Gating
* BIT4 - Tensilica Core Prevent Controller Power Gating
* BIT5 - Ignore D3 / D0i3 Power Gating
* BIT6 - Tensilica Core Prevent DSP Common Power Gating
*/
pwrcfg |= BIT(0) | BIT(4) | BIT(5) | BIT(6);
*(volatile u16_t *)TS_POWER_CONFIG = pwrcfg;
}
/* Configure the MUX to select GPIO functionality for GPIO 23 and 24 */
void iomux_config_ctsrts(void)
{
volatile u32_t iomux_cntrl0 = *(volatile u32_t *)IOMUX_CONTROL0;
/* Set bit 16 to convert the pins to normal GPIOs from UART_RTS_CTS */
iomux_cntrl0 |= BIT(16);
*(volatile u32_t *)IOMUX_CONTROL0 = iomux_cntrl0;
}
/* Configure the MUX to select the correct I2C port (I2C1) */
void iomux_config_i2c(void)
{
volatile u32_t iomux_cntrl2 = *(volatile u32_t *)IOMUX_CONTROL2;
/* Set bit 0 to select i2c1 */
iomux_cntrl2 |= BIT(0);
*(volatile u32_t *)IOMUX_CONTROL2 = iomux_cntrl2;
}
void main(void)
{
printk("Sample app running on: %s Intel_S1000\n", CONFIG_ARCH);
disable_ts_powergate();
iomux_config_i2c();
iomux_config_ctsrts();
}

View file

@ -0,0 +1,4 @@
tests:
test:
platform_whitelist: intel_s1000_crb
tags: boards