drivers: flash: flash_flexspi_nor: support SFDP probe

Support SFDP probe in flexspi nor driver. This probe will allow the
flash driver to dynamically configure quad spi flashes for 1-4-4 mode,
expanding the flash chips supported with this driver.

The following data is read from the SFDP header:
- quad enable method
- fast read command (1-4-4 is maximum supported)

Fixes #55379

Signed-off-by: Daniel DeGrasse <daniel.degrasse@nxp.com>
This commit is contained in:
Daniel DeGrasse 2023-08-18 20:29:54 +00:00 committed by Carles Cufí
parent a10fee2d5e
commit 9d7a3fb647
4 changed files with 675 additions and 125 deletions

View file

@ -59,6 +59,7 @@ if(CONFIG_FLASH_MCUX_FLEXSPI_XIP)
dt_prop(compat_flash PATH ${chosen_flash} PROPERTY compatible)
if(compat_flash MATCHES "nxp,imx-flexspi-nor")
zephyr_code_relocate(FILES flash_mcux_flexspi_nor.c LOCATION ${CONFIG_FLASH_MCUX_FLEXSPI_XIP_MEM}_TEXT)
zephyr_code_relocate(FILES jesd216.c LOCATION ${CONFIG_FLASH_MCUX_FLEXSPI_XIP_MEM}_TEXT)
elseif(compat_flash MATCHES "nxp,imx-flexspi-mx25um51345g")
zephyr_code_relocate(FILES flash_mcux_flexspi_mx25um51345g.c LOCATION ${CONFIG_FLASH_MCUX_FLEXSPI_XIP_MEM}_TEXT)
elseif(compat_flash MATCHES "nxp,imx-flexspi-hyperflash")

View file

@ -40,6 +40,7 @@ config FLASH_MCUX_FLEXSPI_NOR
depends on DT_HAS_NXP_IMX_FLEXSPI_NOR_ENABLED
select FLASH_HAS_PAGE_LAYOUT
select FLASH_HAS_DRIVER_ENABLED
select FLASH_JESD216
select MEMC
select MEMC_MCUX_FLEXSPI

View file

@ -6,11 +6,13 @@
#define DT_DRV_COMPAT nxp_imx_flexspi_nor
#include <zephyr/kernel.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/irq.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/util.h>
#include "spi_nor.h"
#include "jesd216.h"
#include "memc_mcux_flexspi.h"
#ifdef CONFIG_HAS_MCUX_CACHE
@ -40,22 +42,21 @@ static uint8_t nor_write_buf[SPI_NOR_PAGE_SIZE];
LOG_MODULE_REGISTER(flash_flexspi_nor, CONFIG_FLASH_LOG_LEVEL);
enum {
/* Instructions matching with XIP layout */
READ_FAST_QUAD_OUTPUT,
READ_FAST_OUTPUT,
READ_NORMAL_OUTPUT,
READ,
PAGE_PROGRAM,
READ_STATUS,
WRITE_ENABLE,
ERASE_SECTOR,
ERASE_BLOCK,
PAGE_PROGRAM_INPUT,
PAGE_PROGRAM_QUAD_INPUT,
READ_ID,
WRITE_STATUS_REG,
ENTER_QPI,
EXIT_QPI,
READ_STATUS_REG,
ERASE_CHIP,
READ_JESD216,
/* Used for temporary commands during initialization */
SCRATCH_CMD,
SCRATCH_CMD2,
/* Must be last entry */
FLEXSPI_INSTR_END,
};
struct flash_flexspi_nor_config {
@ -71,98 +72,70 @@ struct flash_flexspi_nor_data {
struct device controller;
flexspi_device_config_t config;
flexspi_port_t port;
bool legacy_poll;
struct flash_pages_layout layout;
struct flash_parameters flash_parameters;
};
static const uint32_t flash_flexspi_nor_lut[][4] = {
[READ_ID] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDID,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
/* Initial LUT table */
static const uint32_t flash_flexspi_nor_base_lut[][MEMC_FLEXSPI_CMD_PER_SEQ] = {
/* 1S-1S-1S flash read command, should be compatible with all SPI nor flashes */
[READ] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_READ,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 24),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
},
[READ_STATUS_REG] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
[READ_JESD216] = {
/* Install read SFDP command */
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, JESD216_CMD_READ_SFDP,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 24),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 8,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x4),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
},
[WRITE_STATUS_REG] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04),
/* Standard 1S-1S-1S flash write command, can be switched to 1S-1S-4S when QE is set */
[PAGE_PROGRAM] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[WRITE_ENABLE] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WREN,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WREN,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[ERASE_SECTOR] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE,
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
},
[ERASE_BLOCK] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE,
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
},
[ERASE_CHIP] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_CE,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_CE,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[READ_FAST_QUAD_OUTPUT] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x6B,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 0x08,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04),
[READ_ID] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDID,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01),
},
[READ_FAST_OUTPUT] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x0B,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 0x08,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
},
[READ_NORMAL_OUTPUT] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_READ,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[READ_STATUS] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x81,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
},
[PAGE_PROGRAM_INPUT] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[PAGE_PROGRAM_QUAD_INPUT] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x32,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[ENTER_QPI] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x35,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[EXIT_QPI] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_4PAD, 0xF5,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
[READ_STATUS_REG] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01),
},
};
static int flash_flexspi_nor_get_vendor_id(struct flash_flexspi_nor_data *data,
/* Helper so we can read flash ID without flash access for XIP */
static int flash_flexspi_nor_read_id_helper(struct flash_flexspi_nor_data *data,
uint8_t *vendor_id)
{
uint32_t buffer = 0;
@ -175,17 +148,28 @@ static int flash_flexspi_nor_get_vendor_id(struct flash_flexspi_nor_data *data,
.SeqNumber = 1,
.seqIndex = READ_ID,
.data = &buffer,
.dataSize = 1,
.dataSize = 3,
};
LOG_DBG("Reading id");
ret = memc_flexspi_transfer(&data->controller, &transfer);
*vendor_id = buffer;
if (ret < 0) {
return ret;
}
memcpy(vendor_id, &buffer, 3);
return ret;
}
static int flash_flexspi_nor_read_id(const struct device *dev, uint8_t *vendor_id)
{
struct flash_flexspi_nor_data *data = dev->data;
return flash_flexspi_nor_read_id_helper(data, vendor_id);
}
static int flash_flexspi_nor_read_status(struct flash_flexspi_nor_data *data,
uint32_t *status)
{
@ -204,24 +188,6 @@ static int flash_flexspi_nor_read_status(struct flash_flexspi_nor_data *data,
return memc_flexspi_transfer(&data->controller, &transfer);
}
static int flash_flexspi_nor_write_status(struct flash_flexspi_nor_data *data,
uint32_t *status)
{
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.cmdType = kFLEXSPI_Write,
.SeqNumber = 1,
.seqIndex = WRITE_STATUS_REG,
.data = status,
.dataSize = 1,
};
LOG_DBG("Writing status register");
return memc_flexspi_transfer(&data->controller, &transfer);
}
static int flash_flexspi_nor_write_enable(struct flash_flexspi_nor_data *data)
{
flexspi_transfer_t transfer = {
@ -300,7 +266,7 @@ static int flash_flexspi_nor_page_program(struct flash_flexspi_nor_data *data,
.port = data->port,
.cmdType = kFLEXSPI_Write,
.SeqNumber = 1,
.seqIndex = PAGE_PROGRAM_QUAD_INPUT,
.seqIndex = PAGE_PROGRAM,
.data = (uint32_t *) buffer,
.dataSize = len,
};
@ -315,25 +281,24 @@ static int flash_flexspi_nor_wait_bus_busy(struct flash_flexspi_nor_data *data)
uint32_t status = 0;
int ret;
do {
while (1) {
ret = flash_flexspi_nor_read_status(data, &status);
LOG_DBG("status: 0x%x", status);
if (ret) {
LOG_ERR("Could not read status");
return ret;
}
} while (status & BIT(0));
return 0;
}
static int flash_flexspi_nor_enable_quad_mode(struct flash_flexspi_nor_data *data)
{
uint32_t status = 0x40;
flash_flexspi_nor_write_status(data, &status);
flash_flexspi_nor_wait_bus_busy(data);
memc_flexspi_reset(&data->controller);
if (data->legacy_poll) {
if ((status & BIT(0)) == 0) {
break;
}
} else {
if (status & BIT(7)) {
break;
}
}
}
return 0;
}
@ -494,11 +459,583 @@ static void flash_flexspi_nor_pages_layout(const struct device *dev,
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
/*
* This function enables quad mode, when supported. Otherwise it
* returns an error.
* @param dev: Flexspi device
* @param flexspi_lut: flexspi lut table, useful if instruction writes are needed
* @param qer: DW15 quad enable parameter
* @return 0 if quad mode was entered, or -ENOTSUP if quad mode is not supported
*/
static int flash_flexspi_nor_quad_enable(struct flash_flexspi_nor_data *data,
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ],
uint8_t qer)
{
int ret;
uint32_t buffer = 0;
uint16_t bit = 0;
uint8_t rd_size, wr_size;
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.SeqNumber = 1,
.data = &buffer,
};
flexspi_device_config_t config = {
.flexspiRootClk = MHZ(50),
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */
.ARDSeqNumber = 1,
.ARDSeqIndex = READ,
};
switch (qer) {
case JESD216_DW15_QER_VAL_NONE:
/* No init needed */
return 0;
case JESD216_DW15_QER_VAL_S2B1v1:
case JESD216_DW15_QER_VAL_S2B1v4:
/* Install read and write status command */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
/* Set bit 1 of status register 2 */
bit = BIT(9);
rd_size = 2;
wr_size = 2;
break;
case JESD216_DW15_QER_VAL_S1B6:
/* Install read and write status command */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
/* Set bit 6 of status register 1 */
bit = BIT(6);
rd_size = 1;
wr_size = 1;
break;
case JESD216_DW15_QER_VAL_S2B7:
/* Install read and write status command */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x3F,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x3E,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
/* Set bit 7 of status register 2 */
bit = BIT(7);
rd_size = 1;
wr_size = 1;
break;
case JESD216_DW15_QER_VAL_S2B1v5:
/* Install read and write status command */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR2,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
/* Set bit 1 of status register 2 */
bit = BIT(9);
rd_size = 1;
wr_size = 2;
break;
case JESD216_DW15_QER_VAL_S2B1v6:
/* Install read and write status command */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR2,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR2,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
/* Set bit 7 of status register 2 */
bit = BIT(7);
rd_size = 1;
wr_size = 1;
break;
default:
return -ENOTSUP;
}
ret = memc_flexspi_set_device_config(&data->controller,
&config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
return ret;
}
transfer.dataSize = rd_size;
transfer.seqIndex = SCRATCH_CMD;
transfer.cmdType = kFLEXSPI_Read;
/* Read status register */
ret = memc_flexspi_transfer(&data->controller, &transfer);
if (ret < 0) {
return ret;
}
buffer |= bit;
transfer.dataSize = wr_size;
transfer.seqIndex = SCRATCH_CMD2;
transfer.cmdType = kFLEXSPI_Write;
return memc_flexspi_transfer(&data->controller, &transfer);
}
/*
* This function enables 4 byte addressing, when supported. Otherwise it
* returns an error.
* @param dev: Flexspi device
* @param flexspi_lut: flexspi lut table, useful if instruction writes are needed
* @param en4b: DW16 enable 4 byte mode parameter
* @return 0 if 4 byte mode was entered, or -ENOTSUP if 4 byte mode was not supported
*/
static int flash_flexspi_nor_4byte_enable(struct flash_flexspi_nor_data *data,
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ],
uint32_t en4b)
{
int ret;
uint32_t buffer = 0;
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.SeqNumber = 1,
.data = &buffer,
};
flexspi_device_config_t config = {
.flexspiRootClk = MHZ(50),
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */
.ARDSeqNumber = 1,
.ARDSeqIndex = READ,
};
if (en4b & BIT(6)) {
/* Flash is always in 4 byte mode. We just need to configure LUT */
return 0;
} else if (en4b & BIT(5)) {
/* Dedicated vendor instruction set, which we don't support. Exit here */
return -ENOTSUP;
} else if (en4b & BIT(4)) {
/* Set bit 0 of 16 bit configuration register */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB5,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB1,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
ret = memc_flexspi_set_device_config(&data->controller,
&config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
return ret;
}
transfer.dataSize = 2;
transfer.seqIndex = SCRATCH_CMD;
transfer.cmdType = kFLEXSPI_Read;
/* Read config register */
ret = memc_flexspi_transfer(&data->controller, &transfer);
if (ret < 0) {
return ret;
}
buffer |= BIT(0);
/* Set config register */
transfer.seqIndex = SCRATCH_CMD2;
transfer.cmdType = kFLEXSPI_Read;
return memc_flexspi_transfer(&data->controller, &transfer);
} else if (en4b & BIT(1)) {
/* Issue write enable, then instruction 0xB7 */
flash_flexspi_nor_write_enable(data);
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB7,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
ret = memc_flexspi_set_device_config(&data->controller,
&config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
return ret;
}
transfer.dataSize = 0;
transfer.seqIndex = SCRATCH_CMD;
transfer.cmdType = kFLEXSPI_Command;
return memc_flexspi_transfer(&data->controller, &transfer);
} else if (en4b & BIT(0)) {
/* Issue instruction 0xB7 */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB7,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
ret = memc_flexspi_set_device_config(&data->controller,
&config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
return ret;
}
transfer.dataSize = 0;
transfer.seqIndex = SCRATCH_CMD;
transfer.cmdType = kFLEXSPI_Command;
return memc_flexspi_transfer(&data->controller, &transfer);
}
/* Other methods not supported */
return -ENOTSUP;
}
/*
* This function configures the FlexSPI to manage the flash device
* based on values in SFDP header
* @param data: Flexspi device data
* @param header: SFDP header for flash
* @param bfp: basic flash parameters for flash
* @param flexspi_lut: LUT table, filled with READ LUT command
* @return 0 on success, or negative value on error
*/
static int flash_flexspi_nor_config_flash(struct flash_flexspi_nor_data *data,
struct jesd216_sfdp_header *header,
struct jesd216_bfp *bfp,
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ])
{
struct jesd216_instr instr;
struct jesd216_bfp_dw16 dw16;
struct jesd216_bfp_dw15 dw15;
struct jesd216_bfp_dw14 dw14;
uint8_t addr_width;
uint8_t mode_cmd;
int ret;
addr_width = jesd216_bfp_addrbytes(bfp) ==
JESD216_SFDP_BFP_DW1_ADDRBYTES_VAL_4B ? 32 : 24;
/* Check to see if we can enable 4 byte addressing */
ret = jesd216_bfp_decode_dw16(&header->phdr[0], bfp, &dw16);
if (ret < 0) {
return ret;
}
/* Attempt to enable 4 byte addressing */
ret = flash_flexspi_nor_4byte_enable(data, flexspi_lut, dw16.enter_4ba);
if (ret == 0) {
/* Use 4 byte address width */
addr_width = 32;
/* Update LUT for ERASE_SECTOR and ERASE_BLOCK to use 32 bit addr */
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, addr_width);
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, addr_width);
}
/* Extract the read command.
* Note- enhanced XIP not currently supported, nor is 4-4-4 mode.
*/
if (jesd216_bfp_read_support(&header->phdr[0], bfp,
JESD216_MODE_144, &instr) > 0) {
LOG_DBG("Enable 144 mode");
/* Configure for 144 QUAD read mode */
if (instr.mode_clocks == 2) {
mode_cmd = kFLEXSPI_Command_MODE8_SDR;
} else if (instr.mode_clocks == 1) {
mode_cmd = kFLEXSPI_Command_MODE4_SDR;
} else if (instr.mode_clocks == 0) {
/* Just send dummy cycles during mode clock period */
mode_cmd = kFLEXSPI_Command_DUMMY_SDR;
} else {
return -ENOTSUP;
}
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, instr.instr,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, addr_width);
/* Note- we always set mode bits to 0x0 */
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ(
mode_cmd, kFLEXSPI_4PAD, 0x00,
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, instr.wait_states);
flexspi_lut[READ][2] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
/* Read 1S-4S-4S enable method */
ret = jesd216_bfp_decode_dw15(&header->phdr[0], bfp, &dw15);
if (ret < 0) {
return ret;
}
ret = flash_flexspi_nor_quad_enable(data, flexspi_lut, dw15.qer);
if (ret < 0) {
return ret;
}
/* Now, install 1S-1S-4S page program command */
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_1_4,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, addr_width);
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x4,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
} else if (jesd216_bfp_read_support(&header->phdr[0], bfp,
JESD216_MODE_122, &instr) > 0) {
LOG_DBG("Enable 122 mode");
if (instr.mode_clocks == 4) {
mode_cmd = kFLEXSPI_Command_MODE8_SDR;
} else if (instr.mode_clocks == 2) {
mode_cmd = kFLEXSPI_Command_MODE4_SDR;
} else if (instr.mode_clocks == 1) {
mode_cmd = kFLEXSPI_Command_MODE2_SDR;
} else if (instr.mode_clocks == 0) {
/* Just send dummy cycles during mode clock period */
mode_cmd = kFLEXSPI_Command_DUMMY_SDR;
} else {
return -ENOTSUP;
}
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, instr.instr,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_2PAD, addr_width);
/* Note- we always set mode bits to 0x0 */
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ(
mode_cmd, kFLEXSPI_2PAD, 0x0,
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_2PAD, instr.wait_states);
flexspi_lut[READ][2] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_READ_SDR, kFLEXSPI_2PAD, 0x02,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
/* Now, install 1S-1S-2S page program command */
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_1_2,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, addr_width);
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_2PAD, 0x4,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
}
/* Default to 111 mode if no support exists, leave READ/WRITE untouched */
/* Now, read DW14 to determine the polling method we should use while programming */
ret = jesd216_bfp_decode_dw14(&header->phdr[0], bfp, &dw14);
if (ret < 0) {
return ret;
}
if (dw14.poll_options & BIT(1)) {
/* Read instruction used for polling is 0x70 */
data->legacy_poll = false;
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x70,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01);
} else {
/* Read instruction used for polling is 0x05 */
data->legacy_poll = true;
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01);
}
return 0;
}
/* Helper so we can avoid flash access while performing SFDP probe */
static int flash_flexspi_nor_sfdp_read_helper(struct flash_flexspi_nor_data *dev_data,
off_t offset, void *data, size_t len)
{
flexspi_transfer_t transfer = {
.deviceAddress = offset,
.port = dev_data->port,
.cmdType = kFLEXSPI_Read,
.seqIndex = READ_JESD216,
.SeqNumber = 1,
.data = (uint32_t *)data,
.dataSize = len,
};
/* Get SFDP data */
return memc_flexspi_transfer(&dev_data->controller, &transfer);
}
#if defined(CONFIG_FLASH_JESD216_API)
static int flash_flexspi_nor_sfdp_read(const struct device *dev,
off_t offset, void *data, size_t len)
{
struct flash_flexspi_nor_data *dev_data = dev->data;
return flash_flexspi_nor_sfdp_read_helper(dev_data, offset, data, len);
}
#endif
/* Checks JEDEC ID of flash. If supported, installs custom LUT table */
static int flash_flexspi_nor_check_jedec(struct flash_flexspi_nor_data *data,
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ])
{
int ret;
uint32_t vendor_id;
ret = flash_flexspi_nor_read_id_helper(data, (uint8_t *)&vendor_id);
if (ret < 0) {
return ret;
}
/* Switch on manufacturer and vendor ID */
switch (vendor_id & 0xFFFF) {
case 0x25C2:
/* MX25 flash, use 4 byte read/write */
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_4READ_4B,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32);
/* Flash needs 10 dummy cycles */
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 10,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04);
/* Only 1S-4S-4S page program supported */
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_4_4_4B,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32);
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x4,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
/* Update ERASE commands for 4 byte mode */
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE_4B,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32);
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xDC,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32),
/* Read instruction used for polling is 0x05 */
data->legacy_poll = true;
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01);
/* Device uses bit 6 of status reg 1 for QE */
return flash_flexspi_nor_quad_enable(data, flexspi_lut, JESD216_DW15_QER_VAL_S1B6);
default:
return -ENOTSUP;
}
}
/* Probe parameters from flash SFDP header, and use them to configure the FlexSPI */
static int flash_flexspi_nor_probe(struct flash_flexspi_nor_data *data)
{
uint32_t flexspi_lut[FLEXSPI_INSTR_END][MEMC_FLEXSPI_CMD_PER_SEQ] = {0};
/* JESD216B defines up to 23 basic flash parameters */
uint32_t param_buf[23];
/* Space to store SFDP header and first parameter header */
uint8_t sfdp_buf[JESD216_SFDP_SIZE(1)] __aligned(4);
struct jesd216_bfp *bfp = (struct jesd216_bfp *)param_buf;
struct jesd216_sfdp_header *header = (struct jesd216_sfdp_header *)sfdp_buf;
int ret;
unsigned int key = 0U;
flexspi_device_config_t config = {
.flexspiRootClk = MHZ(50),
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */
.ARDSeqNumber = 1,
.ARDSeqIndex = READ,
};
if (memc_flexspi_is_running_xip(&data->controller)) {
/*
* ==== ENTER CRITICAL SECTION ====
* No flash access should be performed in critical section. All
* code and data accessed must reside in ram.
*/
key = irq_lock();
memc_flexspi_wait_bus_idle(&data->controller);
}
/* SFDP spec requires that we downclock the FlexSPI to 50MHz or less */
ret = memc_flexspi_update_clock(&data->controller, &config,
data->port, MHZ(50));
if (ret < 0) {
goto _exit;
}
/* Setup initial LUT table and FlexSPI configuration */
memcpy(flexspi_lut, flash_flexspi_nor_base_lut, sizeof(flash_flexspi_nor_base_lut));
ret = memc_flexspi_set_device_config(&data->controller, &config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
goto _exit;
}
/* First, check if the JEDEC ID of this flash has explicit support
* in this driver
*/
ret = flash_flexspi_nor_check_jedec(data, flexspi_lut);
if (ret == 0) {
/* Flash was supported, SFDP probe not needed */
goto _program_lut;
}
ret = flash_flexspi_nor_sfdp_read_helper(data, 0, sfdp_buf, sizeof(sfdp_buf));
if (ret < 0) {
goto _exit;
}
LOG_DBG("SFDP header magic: 0x%x", header->magic);
if (jesd216_sfdp_magic(header) != JESD216_SFDP_MAGIC) {
/* Header was read incorrectly */
LOG_WRN("Invalid header, using legacy SPI mode");
data->legacy_poll = true;
goto _program_lut;
}
if (header->phdr[0].len_dw > ARRAY_SIZE(param_buf)) {
/* Not enough space to read parameter table */
ret = -ENOBUFS;
goto _exit;
}
/* Read basic flash parameter table */
ret = flash_flexspi_nor_sfdp_read_helper(data,
jesd216_param_addr(&header->phdr[0]),
param_buf,
sizeof(uint32_t) * header->phdr[0].len_dw);
if (ret < 0) {
goto _exit;
}
/* Configure flash */
ret = flash_flexspi_nor_config_flash(data, header, bfp, flexspi_lut);
if (ret < 0) {
goto _exit;
}
_program_lut:
/*
* Update the FlexSPI with the config structure provided
* from devicetree and the configured LUT
*/
ret = memc_flexspi_set_device_config(&data->controller, &data->config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
return ret;
}
_exit:
memc_flexspi_reset(&data->controller);
if (memc_flexspi_is_running_xip(&data->controller)) {
/* ==== EXIT CRITICAL SECTION ==== */
irq_unlock(key);
}
return ret;
}
static int flash_flexspi_nor_init(const struct device *dev)
{
const struct flash_flexspi_nor_config *config = dev->config;
struct flash_flexspi_nor_data *data = dev->data;
uint8_t vendor_id;
uint32_t vendor_id;
/* First step- use ROM pointer to controller device to create
* a copy of the device structure in RAM we can use while in
@ -511,31 +1048,36 @@ static int flash_flexspi_nor_init(const struct device *dev)
return -ENODEV;
}
if (memc_flexspi_is_running_xip(&data->controller)) {
/* Wait for bus idle before configuring */
memc_flexspi_wait_bus_idle(&data->controller);
if (flash_flexspi_nor_probe(data)) {
if (memc_flexspi_is_running_xip(&data->controller)) {
/* We can't continue from here- the LUT stored in
* the FlexSPI will be invalid so we cannot XIP.
* Instead, spin here
*/
while (1) {
/* Spin */
}
}
LOG_ERR("SFDP probe failed");
return -EIO;
}
if (memc_flexspi_set_device_config(&data->controller, &data->config,
(const uint32_t *)flash_flexspi_nor_lut,
sizeof(flash_flexspi_nor_lut) / MEMC_FLEXSPI_CMD_SIZE,
data->port)) {
LOG_ERR("Could not set device configuration");
return -EINVAL;
/* Set the FlexSPI to full clock speed */
if (memc_flexspi_update_clock(&data->controller, &data->config,
data->port, data->config.flexspiRootClk)) {
LOG_ERR("Could not set flexspi clock speed");
return -ENOTSUP;
}
memc_flexspi_reset(&data->controller);
if (flash_flexspi_nor_get_vendor_id(data, &vendor_id)) {
if (flash_flexspi_nor_read_id(dev, (uint8_t *)&vendor_id)) {
LOG_ERR("Could not read vendor id");
return -EIO;
}
LOG_DBG("Vendor id: 0x%0x", vendor_id);
if (flash_flexspi_nor_enable_quad_mode(data)) {
LOG_ERR("Could not enable quad mode");
return -EIO;
}
return 0;
}
@ -547,6 +1089,10 @@ static const struct flash_driver_api flash_flexspi_nor_api = {
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = flash_flexspi_nor_pages_layout,
#endif
#if defined(CONFIG_FLASH_JESD216_API)
.sfdp_read = flash_flexspi_nor_sfdp_read,
.read_jedec_id = flash_flexspi_nor_read_id,
#endif
};
#define CONCAT3(x, y, z) x ## y ## z
@ -559,7 +1105,7 @@ static const struct flash_driver_api flash_flexspi_nor_api = {
#define FLASH_FLEXSPI_DEVICE_CONFIG(n) \
{ \
.flexspiRootClk = MHZ(120), \
.flexspiRootClk = DT_INST_PROP(n, spi_max_frequency), \
.flashSize = DT_INST_PROP(n, size) / 8 / KB(1), \
.CSIntervalUnit = \
CS_INTERVAL_UNIT( \
@ -572,7 +1118,7 @@ static const struct flash_driver_api flash_flexspi_nor_api = {
.enableWordAddress = DT_INST_PROP(n, word_addressable), \
.AWRSeqIndex = 0, \
.AWRSeqNumber = 0, \
.ARDSeqIndex = READ_FAST_QUAD_OUTPUT, \
.ARDSeqIndex = READ, \
.ARDSeqNumber = 1, \
.AHBWriteWaitUnit = \
AHB_WRITE_WAIT_UNIT( \

View file

@ -10,6 +10,8 @@
/* Size of a command in the LUT table */
#define MEMC_FLEXSPI_CMD_SIZE 4U
/* Number of commands in an instruction sequence */
#define MEMC_FLEXSPI_CMD_PER_SEQ 4U
/**
* @brief Wait for the FlexSPI bus to be idle