driver: sdhc: added atmel SAM4E hsmci driver

This commit adds support for the ATMEL HSMCI peripheral
for the SAM4E MCU series, enabling native SD card support.

Signed-off-by: Vincent van Beveren <v.van.beveren@nikhef.nl>
This commit is contained in:
Vincent van Beveren 2023-05-24 13:49:27 +02:00 committed by Maureen Helm
parent 40b9f51ee5
commit a6db78e2b3
6 changed files with 755 additions and 0 deletions

View file

@ -6,4 +6,6 @@ zephyr_library()
zephyr_library_sources_ifdef(CONFIG_IMX_USDHC imx_usdhc.c)
zephyr_library_sources_ifdef(CONFIG_SPI_SDHC sdhc_spi.c)
zephyr_library_sources_ifdef(CONFIG_MCUX_SDIF mcux_sdif.c)
zephyr_library_sources_ifdef(CONFIG_SAM_HSMCI sam_hsmci.c)
endif()

View file

@ -11,6 +11,7 @@ if SDHC
source "drivers/sdhc/Kconfig.imx"
source "drivers/sdhc/Kconfig.spi"
source "drivers/sdhc/Kconfig.mcux_sdif"
source "drivers/sdhc/Kconfig.sam_hsmci"
config SDHC_INIT_PRIORITY
int "SDHC driver init priority"

View file

@ -0,0 +1,38 @@
# Copyright 2023 Nikhef
# SPDX -License-Identifier: Apache-2.0
config SAM_HSMCI
bool "ATMEL SAM HSMCI driver"
default y
depends on DT_HAS_ATMEL_SAM_HSMCI_ENABLED
select SDHC_SUPPORTS_NATIVE_MODE
help
Enable the ATMEL SAM HSMCI MMC/SD card driver.
if SAM_HSMCI
config SAM_HSMCI_PDCMODE
bool "Use PDC if available"
default y if SOC_SERIES_SAM4E
help
Use peripheral DMA controller, if supported
config SAM_HSMCI_PWRSAVE
bool "Power save during card inactive"
default y
help
Power-save mode reduces the clock-speed during SD card
inactivity.
if SAM_HSMCI_PWRSAVE
config SAM_HSMCI_PWRSAVE_DIV
int "Divisor value of clock when in power-save mode"
default 7
help
SD clock freqeuncy is divided by 2**(N+1) where N
is the divisor value. Valid values are 0 to 7.
endif # SAM_HSMCI_PWRSAVE
endif # SAM_HSMCI

683
drivers/sdhc/sam_hsmci.c Normal file
View file

@ -0,0 +1,683 @@
/*
* Copyright 2023 Nikhef
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT atmel_sam_hsmci
#include <zephyr/drivers/sdhc.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/devicetree.h>
#include <zephyr/logging/log.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
LOG_MODULE_REGISTER(hsmci, CONFIG_SDHC_LOG_LEVEL);
#ifdef HSMCI_MR_PDCMODE
#ifdef CONFIG_SAM_HSMCI_PDCMODE
#define _HSMCI_PDCMODE
#endif
#endif
#ifdef CONFIG_SAM_HSMCI_PWRSAVE
#if (CONFIG_SAM_HSMCI_PWRSAVE_DIV < 0) || (CONFIG_SAM_HSMCI_PWRSAVE_DIV > 7)
#error "CONFIG_SAM_HSMCI_PWRSAVE_DIV must be 0 to 7"
#endif
#endif
#define _HSMCI_DEFAULT_TIMEOUT 5000
#define _HSMCI_MAX_FREQ (SOC_ATMEL_SAM_MCK_FREQ_HZ >> 1)
#define _HSMCI_MIN_FREQ (_HSMCI_MAX_FREQ / 0x200)
#define _MSMCI_MAX_DIVISOR 0x1FF
#define _HSMCI_SR_ERR (HSMCI_SR_RINDE \
| HSMCI_SR_RDIRE \
| HSMCI_SR_RCRCE \
| HSMCI_SR_RENDE \
| HSMCI_SR_RTOE \
| HSMCI_SR_DCRCE \
| HSMCI_SR_DTOE \
| HSMCI_SR_CSTOE \
| HSMCI_SR_OVRE \
| HSMCI_SR_UNRE)
static const uint8_t _resp2size[] = {
[SD_RSP_TYPE_NONE] = HSMCI_CMDR_RSPTYP_NORESP,
[SD_RSP_TYPE_R1] = HSMCI_CMDR_RSPTYP_48_BIT,
[SD_RSP_TYPE_R1b] = HSMCI_CMDR_RSPTYP_R1B,
[SD_RSP_TYPE_R2] = HSMCI_CMDR_RSPTYP_136_BIT,
[SD_RSP_TYPE_R3] = HSMCI_CMDR_RSPTYP_48_BIT,
[SD_RSP_TYPE_R4] = HSMCI_CMDR_RSPTYP_48_BIT,
[SD_RSP_TYPE_R5] = 0 /* SDIO not supported */,
[SD_RSP_TYPE_R5b] = 0 /* SDIO not supported */,
[SD_RSP_TYPE_R6] = HSMCI_CMDR_RSPTYP_48_BIT,
[SD_RSP_TYPE_R7] = HSMCI_CMDR_RSPTYP_48_BIT,
};
/* timeout multiplier shift (actual value is 1 << _mul_shift[*]) */
static const uint8_t _mul_shift[] = {0, 4, 7, 8, 10, 12, 16, 20};
static const uint8_t _mul_shift_size = 8;
struct sam_hsmci_config {
Hsmci *base;
const struct atmel_sam_pmc_config clock_cfg;
const struct pinctrl_dev_config *pincfg;
struct gpio_dt_spec carrier_detect;
};
struct sam_hsmci_data {
bool open_drain;
uint8_t cmd_in_progress;
struct k_mutex mtx;
};
static int sam_hsmci_reset(const struct device *dev)
{
const struct sam_hsmci_config *config = dev->config;
Hsmci *hsmci = config->base;
uint32_t mr = hsmci->HSMCI_MR;
uint32_t dtor = hsmci->HSMCI_DTOR;
uint32_t sdcr = hsmci->HSMCI_SDCR;
uint32_t cstor = hsmci->HSMCI_CSTOR;
uint32_t cfg = hsmci->HSMCI_CFG;
hsmci->HSMCI_CR = HSMCI_CR_SWRST;
hsmci->HSMCI_MR = mr;
hsmci->HSMCI_DTOR = dtor;
hsmci->HSMCI_SDCR = sdcr;
hsmci->HSMCI_CSTOR = cstor;
hsmci->HSMCI_CFG = cfg;
hsmci->HSMCI_CR = HSMCI_CR_PWSEN | HSMCI_CR_MCIEN;
return 0;
}
static int sam_hsmci_get_host_props(const struct device *dev, struct sdhc_host_props *props)
{
memset(props, 0, sizeof(*props));
props->f_max = _HSMCI_MAX_FREQ;
props->f_min = _HSMCI_MIN_FREQ;
/* high-speed not working yet due to limitations of the SDHC sm */
props->host_caps.high_spd_support = false;
props->power_delay = 500;
props->is_spi = false;
props->max_current_330 = 4;
return 0;
}
static int sam_hsmci_set_io(const struct device *dev, struct sdhc_io *ios)
{
const struct sam_hsmci_config *config = dev->config;
struct sam_hsmci_data *data = dev->data;
Hsmci *hsmci = config->base;
uint32_t frequency;
uint32_t div_val;
int ret;
LOG_DBG("%s(clock=%d, bus_width=%d, timing=%d, mode=%d)", __func__, ios->clock,
ios->bus_width, ios->timing, ios->bus_mode);
if (ios->clock > 0) {
if (ios->clock > _HSMCI_MAX_FREQ) {
return -ENOTSUP;
}
ret = clock_control_get_rate(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&config->clock_cfg,
&frequency);
if (ret < 0) {
LOG_ERR("Failed to get clock rate, err=%d", ret);
return ret;
}
div_val = frequency / ios->clock - 2;
if (div_val < 0) {
div_val = 0;
}
if (div_val > _MSMCI_MAX_DIVISOR) {
div_val = _MSMCI_MAX_DIVISOR;
}
LOG_DBG("divider: %d (freq=%d)", div_val, frequency / (div_val + 2));
hsmci->HSMCI_MR &= ~HSMCI_MR_CLKDIV_Msk;
hsmci->HSMCI_MR |=
((div_val & 1) ? HSMCI_MR_CLKODD : 0) | HSMCI_MR_CLKDIV(div_val >> 1);
}
if (ios->bus_width) {
hsmci->HSMCI_SDCR &= ~HSMCI_SDCR_SDCBUS_Msk;
switch (ios->bus_width) {
case SDHC_BUS_WIDTH1BIT:
hsmci->HSMCI_SDCR = HSMCI_SDCR_SDCBUS_1;
break;
case SDHC_BUS_WIDTH4BIT:
hsmci->HSMCI_SDCR = HSMCI_SDCR_SDCBUS_4;
break;
default:
return -ENOTSUP;
}
}
data->open_drain = (ios->bus_mode == SDHC_BUSMODE_OPENDRAIN);
if (ios->timing) {
switch (ios->timing) {
case SDHC_TIMING_LEGACY:
hsmci->HSMCI_CFG &= ~HSMCI_CFG_HSMODE;
break;
case SDHC_TIMING_HS:
hsmci->HSMCI_CFG |= HSMCI_CFG_HSMODE;
break;
default:
return -ENOTSUP;
}
}
return 0;
}
static int sam_hsmci_init(const struct device *dev)
{
const struct sam_hsmci_config *config = dev->config;
int ret;
/* Connect pins to the peripheral */
ret = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("pinctrl_apply_state() => %d", ret);
return ret;
}
/* Enable module's clock */
(void)clock_control_on(SAM_DT_PMC_CONTROLLER, (clock_control_subsys_t)&config->clock_cfg);
/* init carrier detect (if set) */
if (config->carrier_detect.port != NULL) {
if (!gpio_is_ready_dt(&config->carrier_detect)) {
LOG_ERR("GPIO port for carrier-detect pin is not ready");
return -ENODEV;
}
ret = gpio_pin_configure_dt(&config->carrier_detect, GPIO_INPUT);
if (ret < 0) {
LOG_ERR("Couldn't configure carrier-detect pin; (%d)", ret);
return ret;
}
}
Hsmci *hsmci = config->base;
/* reset the device */
hsmci->HSMCI_CR = HSMCI_CR_SWRST;
hsmci->HSMCI_CR = HSMCI_CR_PWSDIS;
hsmci->HSMCI_CR = HSMCI_CR_MCIEN;
#ifdef CONFIG_SAM_HSMCI_PWRSAVE
hsmci->HSMCI_MR =
HSMCI_MR_RDPROOF | HSMCI_MR_WRPROOF | HSMCI_MR_PWSDIV(CONFIG_SAM_HSMCI_PWRSAVE_DIV);
hsmci->HSMCI_CR = HSMCI_CR_PWSEN;
#else
hsmci->HSMCI_MR = HSMCI_MR_RDPROOF | HSMCI_MR_WRPROOF;
#endif
return 0;
}
static int sam_hsmci_get_card_present(const struct device *dev)
{
const struct sam_hsmci_config *config = dev->config;
if (config->carrier_detect.port == NULL) {
return 1;
}
return gpio_pin_get_dt(&config->carrier_detect);
}
static int sam_hsmci_card_busy(const struct device *dev)
{
const struct sam_hsmci_config *config = dev->config;
Hsmci *hsmci = config->base;
return (hsmci->HSMCI_SR & HSMCI_SR_NOTBUSY) == 0;
}
static void sam_hsmci_send_clocks(Hsmci *hsmci)
{
hsmci->HSMCI_MR &= ~(HSMCI_MR_WRPROOF | HSMCI_MR_RDPROOF | HSMCI_MR_FBYTE);
hsmci->HSMCI_ARGR = 0;
hsmci->HSMCI_CMDR =
HSMCI_CMDR_RSPTYP_NORESP | HSMCI_CMDR_SPCMD_INIT | HSMCI_CMDR_OPDCMD_OPENDRAIN;
while (!(hsmci->HSMCI_SR & HSMCI_SR_CMDRDY)) {
;
}
hsmci->HSMCI_MR |= HSMCI_MR_WRPROOF | HSMCI_MR_RDPROOF;
}
static int sam_hsmci_send_cmd(Hsmci *hsmci, struct sdhc_command *cmd, uint32_t cmdr,
struct sam_hsmci_data *data)
{
uint32_t sr;
hsmci->HSMCI_ARGR = cmd->arg;
cmdr |= HSMCI_CMDR_CMDNB(cmd->opcode) | HSMCI_CMDR_MAXLAT_64;
if (data->open_drain) {
cmdr |= HSMCI_CMDR_OPDCMD_OPENDRAIN;
}
uint8_t nrt = cmd->response_type & SDHC_NATIVE_RESPONSE_MASK;
if (nrt > SD_RSP_TYPE_R7) {
return -ENOTSUP;
}
cmdr |= _resp2size[nrt];
hsmci->HSMCI_CMDR = cmdr;
do {
sr = hsmci->HSMCI_SR;
/* special case ,ignore CRC status if response is R3 to clear it */
if (nrt == SD_RSP_TYPE_R3 || nrt == SD_RSP_TYPE_NONE) {
sr &= ~HSMCI_SR_RCRCE;
}
if ((sr & _HSMCI_SR_ERR) != 0) {
LOG_DBG("Status register error bits: %08x", sr & _HSMCI_SR_ERR);
return -EIO;
}
} while (!(sr & HSMCI_SR_CMDRDY));
if (nrt == SD_RSP_TYPE_R1b) {
do {
sr = hsmci->HSMCI_SR;
} while (!((sr & HSMCI_SR_NOTBUSY) && ((sr & HSMCI_SR_DTIP) == 0)));
}
/* RSPR is just a FIFO, index is of no consequence */
cmd->response[3] = hsmci->HSMCI_RSPR[0];
cmd->response[2] = hsmci->HSMCI_RSPR[0];
cmd->response[1] = hsmci->HSMCI_RSPR[0];
cmd->response[0] = hsmci->HSMCI_RSPR[0];
return 0;
}
static int sam_hsmci_wait_write_end(Hsmci *hsmci)
{
uint32_t sr = 0;
#ifdef _HSMCI_PDCMODE
/* Timeout is included in HSMCI, see DTOE bit, not required explicitly. */
do {
sr = hsmci->HSMCI_SR;
if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) {
LOG_DBG("PDC sr 0x%08x error", sr);
return -EIO;
}
} while (!(sr & HSMCI_SR_TXBUFE));
#endif
do {
sr = hsmci->HSMCI_SR;
if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) {
LOG_DBG("PDC sr 0x%08x last transfer error", sr);
return -EIO;
}
} while (!(sr & HSMCI_SR_NOTBUSY));
if (!(hsmci->HSMCI_SR & HSMCI_SR_FIFOEMPTY)) {
return -EIO;
}
return 0;
}
static int sam_hsmci_wait_read_end(Hsmci *hsmci)
{
uint32_t sr;
#ifdef _HSMCI_PDCMODE
do {
sr = hsmci->HSMCI_SR;
if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) {
LOG_DBG("PDC sr 0x%08x error", sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE |
HSMCI_SR_DTOE | HSMCI_SR_DCRCE));
return -EIO;
}
} while (!(sr & HSMCI_SR_RXBUFF));
#endif
do {
sr = hsmci->HSMCI_SR;
if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) {
return -EIO;
}
} while (!(sr & HSMCI_SR_XFRDONE));
return 0;
}
static int sam_hsmci_write_timeout(Hsmci *hsmci, int timeout_ms)
{
/* convert to clocks (coarsely) */
int clocks = ATMEL_SAM_DT_CPU_CLK_FREQ_HZ / 1000 * timeout_ms;
int mul, max_clock;
for (int i = 0; i < _mul_shift_size; i++) {
mul = 1 << _mul_shift[i];
max_clock = 15 * mul;
if (max_clock > clocks) {
hsmci->HSMCI_DTOR = ((i << HSMCI_DTOR_DTOMUL_Pos) & HSMCI_DTOR_DTOMUL_Msk) |
HSMCI_DTOR_DTOCYC((clocks + mul - 1) / mul);
return 0;
}
}
/*
* So, if it is > maximum timeout... we'll just put it on the maximum the driver supports
* its not nice.. but it should work.. what else is there to do?
*/
hsmci->HSMCI_DTOR = HSMCI_DTOR_DTOMUL_Msk | HSMCI_DTOR_DTOCYC_Msk;
return 0;
}
static inline int wait_write_transfer_done(Hsmci *hsmci)
{
int sr;
do {
sr = hsmci->HSMCI_SR;
if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) {
return -EIO;
}
} while (!(sr & HSMCI_SR_TXRDY));
return 0;
}
static inline int wait_read_transfer_done(Hsmci *hsmci)
{
int sr;
do {
sr = HSMCI->HSMCI_SR;
if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) {
return -EIO;
}
} while (!(sr & HSMCI_SR_RXRDY));
return 0;
}
#ifndef _HSMCI_PDCMODE
static int hsmci_do_manual_transfer(Hsmci *hsmci, bool byte_mode, bool is_write, void *data,
int transfer_count)
{
int ret;
if (is_write) {
if (byte_mode) {
const uint8_t *ptr = data;
while (transfer_count-- > 0) {
ret = wait_write_transfer_done(hsmci);
if (ret != 0) {
return ret;
}
hsmci->HSMCI_TDR = *ptr;
ptr++;
}
} else {
const uint32_t *ptr = data;
while (transfer_count-- > 0) {
ret = wait_write_transfer_done(hsmci);
if (ret != 0) {
return ret;
}
hsmci->HSMCI_TDR = *ptr;
ptr++;
}
}
ret = sam_hsmci_wait_write_end(hsmci);
} else {
if (byte_mode) {
uint8_t *ptr = data;
while (transfer_count-- > 0) {
ret = wait_read_transfer_done(hsmci);
if (ret != 0) {
return ret;
}
*ptr = hsmci->HSMCI_RDR;
ptr++;
}
} else {
uint32_t *ptr = data;
while (transfer_count-- > 0) {
ret = wait_read_transfer_done(hsmci);
if (ret != 0) {
return ret;
}
*ptr = hsmci->HSMCI_RDR;
ptr++;
}
}
ret = sam_hsmci_wait_read_end(hsmci);
}
return ret;
}
#endif /* !_HSMCI_PDCMODE */
static int sam_hsmci_request_inner(const struct device *dev, struct sdhc_command *cmd,
struct sdhc_data *sd_data)
{
const struct sam_hsmci_config *config = dev->config;
struct sam_hsmci_data *data = dev->data;
Hsmci *hsmci = config->base;
uint32_t sr;
uint32_t size;
uint32_t transfer_count;
uint32_t cmdr = 0;
int ret;
bool is_write, byte_mode;
LOG_DBG("%s(opcode=%d, arg=%08x, data=%08x, rsptype=%d)", __func__, cmd->opcode, cmd->arg,
(uint32_t)sd_data, cmd->response_type & SDHC_NATIVE_RESPONSE_MASK);
if (cmd->opcode == SD_GO_IDLE_STATE) {
/* send 74 clocks, as required by SD spec */
sam_hsmci_send_clocks(hsmci);
}
if (sd_data) {
cmdr |= HSMCI_CMDR_TRCMD_START_DATA;
ret = sam_hsmci_write_timeout(hsmci, cmd->timeout_ms);
if (ret != 0) {
return ret;
}
switch (cmd->opcode) {
case SD_WRITE_SINGLE_BLOCK:
cmdr |= HSMCI_CMDR_TRTYP_SINGLE;
cmdr |= HSMCI_CMDR_TRDIR_WRITE;
is_write = true;
break;
case SD_WRITE_MULTIPLE_BLOCK:
is_write = true;
cmdr |= HSMCI_CMDR_TRTYP_MULTIPLE;
cmdr |= HSMCI_CMDR_TRDIR_WRITE;
break;
case SD_APP_SEND_SCR:
case SD_SWITCH:
case SD_READ_SINGLE_BLOCK:
is_write = false;
cmdr |= HSMCI_CMDR_TRTYP_SINGLE;
cmdr |= HSMCI_CMDR_TRDIR_READ;
break;
case SD_READ_MULTIPLE_BLOCK:
is_write = false;
cmdr |= HSMCI_CMDR_TRTYP_MULTIPLE;
cmdr |= HSMCI_CMDR_TRDIR_READ;
break;
case SD_APP_SEND_NUM_WRITTEN_BLK:
is_write = false;
break;
default:
return -ENOTSUP;
}
if ((sd_data->block_size & 0x3) == 0 && (((uint32_t)sd_data->data) & 0x3) == 0) {
size = (sd_data->block_size + 3) >> 2;
hsmci->HSMCI_MR &= ~HSMCI_MR_FBYTE;
byte_mode = true;
} else {
size = sd_data->block_size;
hsmci->HSMCI_MR |= HSMCI_MR_FBYTE;
byte_mode = false;
}
hsmci->HSMCI_BLKR =
HSMCI_BLKR_BLKLEN(sd_data->block_size) | HSMCI_BLKR_BCNT(sd_data->blocks);
transfer_count = size * sd_data->blocks;
#ifdef _HSMCI_PDCMODE
hsmci->HSMCI_MR |= HSMCI_MR_PDCMODE;
hsmci->HSMCI_RNCR = 0;
if (is_write) {
hsmci->HSMCI_TCR = transfer_count;
hsmci->HSMCI_TPR = (uint32_t)sd_data->data;
} else {
hsmci->HSMCI_RCR = transfer_count;
hsmci->HSMCI_RPR = (uint32_t)sd_data->data;
hsmci->HSMCI_PTCR = HSMCI_PTCR_RXTEN;
}
} else {
hsmci->HSMCI_MR &= ~HSMCI_MR_PDCMODE;
#endif /* _HSMCI_PDCMODE */
}
ret = sam_hsmci_send_cmd(hsmci, cmd, cmdr, data);
if (sd_data) {
#ifdef _HSMCI_PDCMODE
if (ret == 0) {
if (is_write) {
hsmci->HSMCI_PTCR = HSMCI_PTCR_TXTEN;
ret = sam_hsmci_wait_write_end(hsmci);
} else {
ret = sam_hsmci_wait_read_end(hsmci);
}
}
hsmci->HSMCI_PTCR = HSMCI_PTCR_TXTDIS | HSMCI_PTCR_RXTDIS;
hsmci->HSMCI_MR &= ~HSMCI_MR_PDCMODE;
#else /* !_HSMCI_PDCMODE */
if (ret == 0) {
ret = hsmci_do_manual_transfer(hsmci, byte_mode, is_write, sd_data->data,
transfer_count);
}
#endif /* _HSMCI_PDCMODE */
}
sr = hsmci->HSMCI_SR;
LOG_DBG("RSP0=%08x, RPS1=%08x, RPS2=%08x,RSP3=%08x, SR=%08x", cmd->response[0],
cmd->response[1], cmd->response[2], cmd->response[3], sr);
return ret;
}
static void sam_hsmci_abort(const struct device *dev)
{
#ifdef _HSMCI_PDCMODE
const struct sam_hsmci_config *config = dev->config;
Hsmci *hsmci = config->base;
hsmci->HSMCI_PTCR = HSMCI_PTCR_RXTDIS | HSMCI_PTCR_TXTDIS;
#endif /* _HSMCI_PDCMODE */
struct sdhc_command cmd = {
.opcode = SD_STOP_TRANSMISSION, .arg = 0, .response_type = SD_RSP_TYPE_NONE};
sam_hsmci_request_inner(dev, &cmd, NULL);
}
static int sam_hsmci_request(const struct device *dev, struct sdhc_command *cmd,
struct sdhc_data *sd_data)
{
struct sam_hsmci_data *dev_data = dev->data;
int busy_timeout = _HSMCI_DEFAULT_TIMEOUT;
int ret;
ret = k_mutex_lock(&dev_data->mtx, K_MSEC(cmd->timeout_ms));
if (ret) {
LOG_ERR("Could not access card");
return -EBUSY;
}
#ifdef CONFIG_SAM_HSMCI_PWRSAVE
const struct sam_hsmci_config *config = dev->config;
Hsmci *hsmci = config->base;
hsmci->HSMCI_CR = HSMCI_CR_PWSDIS;
#endif /* CONFIG_SAM_HSMCI_PWRSAVE */
do {
ret = sam_hsmci_request_inner(dev, cmd, sd_data);
if (sd_data && (ret || sd_data->blocks > 1)) {
sam_hsmci_abort(dev);
while (busy_timeout > 0) {
if (!sam_hsmci_card_busy(dev)) {
break;
}
k_busy_wait(125);
busy_timeout -= 125;
}
if (busy_timeout <= 0) {
LOG_ERR("Card did not idle after CMD12");
ret = -ETIMEDOUT;
}
}
} while (ret != 0 && (cmd->retries-- > 0));
#ifdef CONFIG_SAM_HSMCI_PWRSAVE
hsmci->HSMCI_CR = HSMCI_CR_PWSEN;
#endif /* CONFIG_SAM_HSMCI_PWRSAVE */
k_mutex_unlock(&dev_data->mtx);
return ret;
}
static const struct sdhc_driver_api hsmci_api = {
.reset = sam_hsmci_reset,
.get_host_props = sam_hsmci_get_host_props,
.set_io = sam_hsmci_set_io,
.get_card_present = sam_hsmci_get_card_present,
.request = sam_hsmci_request,
.card_busy = sam_hsmci_card_busy,
};
#define SAM_HSMCI_INIT(N) \
PINCTRL_DT_INST_DEFINE(N); \
static const struct sam_hsmci_config hsmci_##N##_config = { \
.base = (Hsmci *)DT_INST_REG_ADDR(N), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(N), \
.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(N), \
.carrier_detect = GPIO_DT_SPEC_INST_GET_OR(N, cd_gpios, {0})}; \
static struct sam_hsmci_data hsmci_##N##_data = {}; \
DEVICE_DT_INST_DEFINE(N, &sam_hsmci_init, NULL, &hsmci_##N##_data, &hsmci_##N##_config, \
POST_KERNEL, CONFIG_SDHC_INIT_PRIORITY, &hsmci_api);
DT_INST_FOREACH_STATUS_OKAY(SAM_HSMCI_INIT)

View file

@ -294,6 +294,13 @@
clocks = <&pmc PMC_TYPE_PERIPHERAL 8>;
status = "disabled";
};
hsmci: hsmci@40080000 {
compatible = "atmel,sam-hsmci";
reg = <0x40080000 0x1000>;
clocks = <&pmc PMC_TYPE_PERIPHERAL 16>;
status = "disabled";
};
};
};

View file

@ -0,0 +1,24 @@
# Copyright 2023, Nikhef
# SPDX-License-Identifier: Apache-2.0
description: ATMEL (Microchip) SAM HSMCI SD host controller
compatible: "atmel,sam-hsmci"
include: [sdhc.yaml, pinctrl-device.yaml]
properties:
reg:
required: true
pinctrl-0:
required: true
pinctrl-names:
required: true
clocks:
required: true
cd-gpios:
type: phandle-array