drivers: spi: Support dma mode for atcspi200

1. Support the dma mode for andes_atcspi200
   and use board adp_xc7k_ae350 for testing.
2. Refine the function mechanism.

Signed-off-by: Kevin Wang <kevinwang821020@google.com>
This commit is contained in:
Kevin Wang 2023-09-15 10:18:16 +08:00 committed by Carles Cufí
parent a02011bac6
commit c181dcced4
3 changed files with 563 additions and 18 deletions

View file

@ -11,3 +11,12 @@ config SPI_ANDES_ATCSPI200
depends on DT_HAS_ANDESTECH_ATCSPI200_ENABLED
help
Enable driver for Andes ATCSPI200 SPI controller
if SPI_ANDES_ATCSPI200
config ANDES_SPI_DMA_MODE
bool "Using DMA mode for spi"
default y
depends on DMA
endif # SPI_ANDES_ATCSPI200

View file

@ -12,6 +12,27 @@
typedef void (*atcspi200_cfg_func_t)(void);
#ifdef CONFIG_ANDES_SPI_DMA_MODE
#define ANDES_SPI_DMA_ERROR_FLAG 0x01
#define ANDES_SPI_DMA_RX_DONE_FLAG 0x02
#define ANDES_SPI_DMA_TX_DONE_FLAG 0x04
#define ANDES_SPI_DMA_DONE_FLAG \
(ANDES_SPI_DMA_RX_DONE_FLAG | ANDES_SPI_DMA_TX_DONE_FLAG)
struct stream {
const struct device *dma_dev;
uint32_t channel;
uint32_t block_idx;
struct dma_config dma_cfg;
struct dma_block_config dma_blk_cfg;
struct dma_block_config chain_block[MAX_CHAIN_SIZE];
uint8_t priority;
bool src_addr_increment;
bool dst_addr_increment;
};
#endif
struct spi_atcspi200_data {
struct spi_context ctx;
uint32_t tx_fifo_size;
@ -19,6 +40,10 @@ struct spi_atcspi200_data {
int tx_cnt;
size_t chunk_len;
bool busy;
#ifdef CONFIG_ANDES_SPI_DMA_MODE
struct stream dma_rx;
struct stream dma_tx;
#endif
};
struct spi_atcspi200_cfg {
@ -85,6 +110,7 @@ static int spi_config(const struct device *dev,
static int spi_transfer(const struct device *dev)
{
struct spi_atcspi200_data * const data = dev->data;
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_context *ctx = &data->ctx;
uint32_t data_len, tctrl, int_msk;
@ -94,7 +120,7 @@ static int spi_transfer(const struct device *dev)
data_len = 0;
}
if (len > MAX_TRANSFER_CNT) {
if (data_len > MAX_TRANSFER_CNT) {
return -EINVAL;
}
@ -164,6 +190,412 @@ static int configure(const struct device *dev,
return 0;
}
#ifdef CONFIG_ANDES_SPI_DMA_MODE
static int spi_dma_tx_load(const struct device *dev);
static int spi_dma_rx_load(const struct device *dev);
static inline void spi_tx_dma_enable(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
/* Enable TX DMA */
sys_set_bits(SPI_CTRL(cfg->base), CTRL_TX_DMA_EN_MSK);
}
static inline void spi_tx_dma_disable(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
/* Disable TX DMA */
sys_clear_bits(SPI_CTRL(cfg->base), CTRL_TX_DMA_EN_MSK);
}
static inline void spi_rx_dma_enable(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
/* Enable RX DMA */
sys_set_bits(SPI_CTRL(cfg->base), CTRL_RX_DMA_EN_MSK);
}
static inline void spi_rx_dma_disable(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
/* Disable RX DMA */
sys_clear_bits(SPI_CTRL(cfg->base), CTRL_RX_DMA_EN_MSK);
}
static int spi_dma_move_buffers(const struct device *dev)
{
struct spi_atcspi200_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
uint32_t error = 0;
data->dma_rx.dma_blk_cfg.next_block = NULL;
data->dma_tx.dma_blk_cfg.next_block = NULL;
if (spi_context_tx_on(ctx)) {
error = spi_dma_tx_load(dev);
if (error != 0) {
return error;
}
}
if (spi_context_rx_on(ctx)) {
error = spi_dma_rx_load(dev);
if (error != 0) {
return error;
}
}
return 0;
}
static inline void dma_rx_callback(const struct device *dev, void *user_data,
uint32_t channel, int status)
{
const struct device *spi_dev = (struct device *)user_data;
struct spi_atcspi200_data *data = spi_dev->data;
struct spi_context *ctx = &data->ctx;
int error;
dma_stop(data->dma_rx.dma_dev, data->dma_rx.channel);
spi_rx_dma_disable(spi_dev);
if (spi_context_rx_on(ctx)) {
if (spi_dma_rx_load(spi_dev) != 0) {
return;
}
spi_rx_dma_enable(spi_dev);
error = dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
__ASSERT(error == 0, "dma_start was failed in rx callback");
}
}
static inline void dma_tx_callback(const struct device *dev, void *user_data,
uint32_t channel, int status)
{
const struct device *spi_dev = (struct device *)user_data;
struct spi_atcspi200_data *data = spi_dev->data;
struct spi_context *ctx = &data->ctx;
int error;
dma_stop(data->dma_tx.dma_dev, data->dma_tx.channel);
spi_tx_dma_disable(spi_dev);
if (spi_context_tx_on(ctx)) {
if (spi_dma_tx_load(spi_dev) != 0) {
return;
}
spi_tx_dma_enable(spi_dev);
error = dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
__ASSERT(error == 0, "dma_start was failed in tx callback");
}
}
/*
* dummy value used for transferring NOP when tx buf is null
* and use as dummy sink for when rx buf is null
*/
uint32_t dummy_rx_tx_buffer;
static int spi_dma_tx_load(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_atcspi200_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int remain_len, ret, dfs;
/* prepare the block for this TX DMA channel */
memset(&data->dma_tx.dma_blk_cfg, 0, sizeof(struct dma_block_config));
if (ctx->current_tx->len > data->chunk_len) {
data->dma_tx.dma_blk_cfg.block_size = data->chunk_len /
data->dma_tx.dma_cfg.dest_data_size;
} else {
data->dma_tx.dma_blk_cfg.block_size = ctx->current_tx->len /
data->dma_tx.dma_cfg.dest_data_size;
}
/* tx direction has memory as source and periph as dest. */
if (ctx->current_tx->buf == NULL) {
dummy_rx_tx_buffer = 0;
/* if tx buff is null, then sends NOP on the line. */
data->dma_tx.dma_blk_cfg.source_address = (uintptr_t)&dummy_rx_tx_buffer;
data->dma_tx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
data->dma_tx.dma_blk_cfg.source_address = (uintptr_t)ctx->current_tx->buf;
if (data->dma_tx.src_addr_increment) {
data->dma_tx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_tx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3;
remain_len = data->chunk_len - ctx->current_tx->len;
spi_context_update_tx(ctx, dfs, ctx->current_tx->len);
data->dma_tx.dma_blk_cfg.dest_address = (uint32_t)SPI_DATA(cfg->base);
/* fifo mode NOT USED there */
if (data->dma_tx.dst_addr_increment) {
data->dma_tx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_tx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
/* direction is given by the DT */
data->dma_tx.dma_cfg.head_block = &data->dma_tx.dma_blk_cfg;
data->dma_tx.dma_cfg.head_block->next_block = NULL;
/* give the client dev as arg, as the callback comes from the dma */
data->dma_tx.dma_cfg.user_data = (void *)dev;
if (data->dma_tx.dma_cfg.source_chaining_en) {
data->dma_tx.dma_cfg.block_count = ctx->tx_count;
data->dma_tx.dma_cfg.dma_callback = NULL;
data->dma_tx.block_idx = 0;
struct dma_block_config *blk_cfg = &data->dma_tx.dma_blk_cfg;
const struct spi_buf *current_tx = ctx->current_tx;
while (remain_len > 0) {
struct dma_block_config *next_blk_cfg;
next_blk_cfg = &data->dma_tx.chain_block[data->dma_tx.block_idx];
data->dma_tx.block_idx += 1;
blk_cfg->next_block = next_blk_cfg;
current_tx = ctx->current_tx;
next_blk_cfg->block_size = current_tx->len /
data->dma_tx.dma_cfg.dest_data_size;
/* tx direction has memory as source and periph as dest. */
if (current_tx->buf == NULL) {
dummy_rx_tx_buffer = 0;
/* if tx buff is null, then sends NOP on the line. */
next_blk_cfg->source_address = (uintptr_t)&dummy_rx_tx_buffer;
next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
next_blk_cfg->source_address = (uintptr_t)current_tx->buf;
if (data->dma_tx.src_addr_increment) {
next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
next_blk_cfg->dest_address = (uint32_t)SPI_DATA(cfg->base);
/* fifo mode NOT USED there */
if (data->dma_tx.dst_addr_increment) {
next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
blk_cfg = next_blk_cfg;
next_blk_cfg->next_block = NULL;
remain_len -= ctx->current_tx->len;
spi_context_update_tx(ctx, dfs, ctx->current_tx->len);
}
} else {
data->dma_tx.dma_blk_cfg.next_block = NULL;
data->dma_tx.dma_cfg.block_count = 1;
data->dma_tx.dma_cfg.dma_callback = dma_tx_callback;
}
/* pass our client origin to the dma: data->dma_tx.dma_channel */
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.channel,
&data->dma_tx.dma_cfg);
/* the channel is the actual stream from 0 */
if (ret != 0) {
data->dma_tx.block_idx = 0;
data->dma_tx.dma_blk_cfg.next_block = NULL;
return ret;
}
return 0;
}
static int spi_dma_rx_load(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_atcspi200_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int remain_len, ret, dfs;
/* prepare the block for this RX DMA channel */
memset(&data->dma_rx.dma_blk_cfg, 0, sizeof(struct dma_block_config));
if (ctx->current_rx->len > data->chunk_len) {
data->dma_rx.dma_blk_cfg.block_size = data->chunk_len /
data->dma_rx.dma_cfg.dest_data_size;
} else {
data->dma_rx.dma_blk_cfg.block_size = ctx->current_rx->len /
data->dma_rx.dma_cfg.dest_data_size;
}
/* rx direction has periph as source and mem as dest. */
if (ctx->current_rx->buf == NULL) {
/* if rx buff is null, then write data to dummy address. */
data->dma_rx.dma_blk_cfg.dest_address = (uintptr_t)&dummy_rx_tx_buffer;
data->dma_rx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
data->dma_rx.dma_blk_cfg.dest_address = (uintptr_t)ctx->current_rx->buf;
if (data->dma_rx.dst_addr_increment) {
data->dma_rx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_rx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3;
remain_len = data->chunk_len - ctx->current_rx->len;
spi_context_update_rx(ctx, dfs, ctx->current_rx->len);
data->dma_rx.dma_blk_cfg.source_address = (uint32_t)SPI_DATA(cfg->base);
if (data->dma_rx.src_addr_increment) {
data->dma_rx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
data->dma_rx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
data->dma_rx.dma_cfg.head_block = &data->dma_rx.dma_blk_cfg;
data->dma_rx.dma_cfg.head_block->next_block = NULL;
data->dma_rx.dma_cfg.user_data = (void *)dev;
if (data->dma_rx.dma_cfg.source_chaining_en) {
data->dma_rx.dma_cfg.block_count = ctx->rx_count;
data->dma_rx.dma_cfg.dma_callback = NULL;
data->dma_rx.block_idx = 0;
struct dma_block_config *blk_cfg = &data->dma_rx.dma_blk_cfg;
const struct spi_buf *current_rx = ctx->current_rx;
while (remain_len > 0) {
struct dma_block_config *next_blk_cfg;
next_blk_cfg = &data->dma_rx.chain_block[data->dma_rx.block_idx];
data->dma_rx.block_idx += 1;
blk_cfg->next_block = next_blk_cfg;
current_rx = ctx->current_rx;
next_blk_cfg->block_size = current_rx->len /
data->dma_rx.dma_cfg.dest_data_size;
/* rx direction has periph as source and mem as dest. */
if (current_rx->buf == NULL) {
/* if rx buff is null, then write data to dummy address. */
next_blk_cfg->dest_address = (uintptr_t)&dummy_rx_tx_buffer;
next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
} else {
next_blk_cfg->dest_address = (uintptr_t)current_rx->buf;
if (data->dma_rx.dst_addr_increment) {
next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
next_blk_cfg->source_address = (uint32_t)SPI_DATA(cfg->base);
if (data->dma_rx.src_addr_increment) {
next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
blk_cfg = next_blk_cfg;
next_blk_cfg->next_block = NULL;
remain_len -= ctx->current_rx->len;
spi_context_update_rx(ctx, dfs, ctx->current_rx->len);
}
} else {
data->dma_rx.dma_blk_cfg.next_block = NULL;
data->dma_rx.dma_cfg.block_count = 1;
data->dma_rx.dma_cfg.dma_callback = dma_rx_callback;
}
/* pass our client origin to the dma: data->dma_rx.channel */
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.channel,
&data->dma_rx.dma_cfg);
/* the channel is the actual stream from 0 */
if (ret != 0) {
data->dma_rx.block_idx = 0;
data->dma_rx.dma_blk_cfg.next_block = NULL;
return ret;
}
return 0;
}
static int spi_transfer_dma(const struct device *dev)
{
const struct spi_atcspi200_cfg * const cfg = dev->config;
struct spi_atcspi200_data * const data = dev->data;
struct spi_context *ctx = &data->ctx;
uint32_t data_len, tctrl, dma_rx_enable, dma_tx_enable;
int error = 0;
data_len = data->chunk_len - 1;
if (data_len > MAX_TRANSFER_CNT) {
return -EINVAL;
}
if (!spi_context_rx_on(ctx)) {
tctrl = (TRNS_MODE_WRITE_ONLY << TCTRL_TRNS_MODE_OFFSET) |
(data_len << TCTRL_WR_TCNT_OFFSET);
dma_rx_enable = 0;
dma_tx_enable = 1;
} else if (!spi_context_tx_on(ctx)) {
tctrl = (TRNS_MODE_READ_ONLY << TCTRL_TRNS_MODE_OFFSET) |
(data_len << TCTRL_RD_TCNT_OFFSET);
dma_rx_enable = 1;
dma_tx_enable = 0;
} else {
tctrl = (TRNS_MODE_WRITE_READ << TCTRL_TRNS_MODE_OFFSET) |
(data_len << TCTRL_WR_TCNT_OFFSET) |
(data_len << TCTRL_RD_TCNT_OFFSET);
dma_rx_enable = 1;
dma_tx_enable = 1;
}
sys_write32(tctrl, SPI_TCTRL(cfg->base));
/* Set sclk_div to zero */
sys_clear_bits(SPI_TIMIN(cfg->base), 0xff);
/* Enable END Interrupts */
sys_write32(IEN_END_MSK, SPI_INTEN(cfg->base));
/* Setting DMA config*/
error = spi_dma_move_buffers(dev);
if (error != 0) {
return error;
}
/* Start transferring */
sys_write32(0, SPI_CMD(cfg->base));
if (dma_rx_enable) {
spi_rx_dma_enable(dev);
error = dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
if (error != 0) {
return error;
}
}
if (dma_tx_enable) {
spi_tx_dma_enable(dev);
error = dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
if (error != 0) {
return error;
}
}
return 0;
}
#endif
static int transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
@ -187,7 +619,6 @@ static int transceive(const struct device *dev,
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, dfs);
spi_context_cs_control(ctx, true);
transfer_next_chunk(dev);
sys_set_bits(SPI_CTRL(cfg->base), CTRL_TX_FIFO_RST_MSK);
sys_set_bits(SPI_CTRL(cfg->base), CTRL_RX_FIFO_RST_MSK);
@ -204,11 +635,23 @@ static int transceive(const struct device *dev,
data->chunk_len = chunk_len;
error = spi_transfer(dev);
if (error != 0) {
return error;
}
#ifdef CONFIG_ANDES_SPI_DMA_MODE
if ((data->dma_tx.dma_dev != NULL) && (data->dma_rx.dma_dev != NULL)) {
error = spi_transfer_dma(dev);
if (error != 0) {
return error;
}
} else {
#endif /* CONFIG_ANDES_SPI_DMA_MODE */
error = spi_transfer(dev);
if (error != 0) {
return error;
}
#ifdef CONFIG_ANDES_SPI_DMA_MODE
}
#endif /* CONFIG_ANDES_SPI_DMA_MODE */
error = spi_context_wait_for_completion(ctx);
spi_context_cs_control(ctx, false);
}
@ -266,6 +709,18 @@ int spi_atcspi200_init(const struct device *dev)
spi_context_unlock_unconditionally(&data->ctx);
#ifdef CONFIG_ANDES_SPI_DMA_MODE
if (!data->dma_tx.dma_dev) {
LOG_ERR("DMA device not found");
return -ENODEV;
}
if (!data->dma_rx.dma_dev) {
LOG_ERR("DMA device not found");
return -ENODEV;
}
#endif
/* Get the TX/RX FIFO size of this device */
data->tx_fifo_size = TX_FIFO_SIZE(cfg->base);
data->rx_fifo_size = RX_FIFO_SIZE(cfg->base);
@ -385,6 +840,24 @@ static void spi_atcspi200_irq_handler(void *arg)
/* Disable all SPI interrupts */
sys_write32(0, SPI_INTEN(cfg->base));
#ifdef CONFIG_ANDES_SPI_DMA_MODE
if ((data->dma_tx.dma_dev != NULL) && data->dma_tx.dma_cfg.source_chaining_en) {
spi_tx_dma_disable(dev);
dma_stop(data->dma_tx.dma_dev, data->dma_tx.channel);
data->dma_tx.block_idx = 0;
data->dma_tx.dma_blk_cfg.next_block = NULL;
}
if ((data->dma_rx.dma_dev != NULL) && data->dma_rx.dma_cfg.source_chaining_en) {
spi_rx_dma_disable(dev);
dma_stop(data->dma_rx.dma_dev, data->dma_rx.channel);
data->dma_rx.block_idx = 0;
data->dma_rx.dma_blk_cfg.next_block = NULL;
}
#endif /* CONFIG_ANDES_SPI_DMA_MODE */
data->busy = false;
spi_context_complete(ctx, dev, error);
@ -392,7 +865,67 @@ static void spi_atcspi200_irq_handler(void *arg)
}
}
#if CONFIG_ANDES_SPI_DMA_MODE
#define ANDES_DMA_CONFIG_DIRECTION(config) (FIELD_GET(GENMASK(1, 0), config))
#define ANDES_DMA_CONFIG_PERIPHERAL_ADDR_INC(config) (FIELD_GET(BIT(2), config))
#define ANDES_DMA_CONFIG_MEMORY_ADDR_INC(config) (FIELD_GET(BIT(3), config))
#define ANDES_DMA_CONFIG_PERIPHERAL_DATA_SIZE(config) (1 << (FIELD_GET(GENMASK(6, 4), config)))
#define ANDES_DMA_CONFIG_MEMORY_DATA_SIZE(config) (1 << (FIELD_GET(GENMASK(9, 7), config)))
#define ANDES_DMA_CONFIG_PRIORITY(config) (FIELD_GET(BIT(10), config))
#define DMA_CHANNEL_CONFIG(id, dir) \
DT_INST_DMAS_CELL_BY_NAME(id, dir, channel_config)
#define SPI_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(index, dir)), \
.channel = \
DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
.dma_cfg = { \
.dma_slot = \
DT_INST_DMAS_CELL_BY_NAME(index, dir, slot), \
.channel_direction = ANDES_DMA_CONFIG_DIRECTION( \
DMA_CHANNEL_CONFIG(index, dir)), \
.complete_callback_en = 0, \
.error_callback_en = 0, \
.source_data_size = \
ANDES_DMA_CONFIG_##src_dev##_DATA_SIZE( \
DMA_CHANNEL_CONFIG(index, dir) \
), \
.dest_data_size = \
ANDES_DMA_CONFIG_##dest_dev##_DATA_SIZE( \
DMA_CHANNEL_CONFIG(index, dir) \
), \
.source_burst_length = 1, /* SINGLE transfer */ \
.dest_burst_length = 1, /* SINGLE transfer */ \
.channel_priority = ANDES_DMA_CONFIG_PRIORITY( \
DMA_CHANNEL_CONFIG(index, dir) \
), \
.source_chaining_en = DT_PROP(DT_INST_DMAS_CTLR_BY_NAME( \
index, dir), chain_transfer), \
.dest_chaining_en = DT_PROP(DT_INST_DMAS_CTLR_BY_NAME( \
index, dir), chain_transfer), \
}, \
.src_addr_increment = \
ANDES_DMA_CONFIG_##src_dev##_ADDR_INC( \
DMA_CHANNEL_CONFIG(index, dir) \
), \
.dst_addr_increment = \
ANDES_DMA_CONFIG_##dest_dev##_ADDR_INC( \
DMA_CHANNEL_CONFIG(index, dir) \
)
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) \
.dma_##dir = { \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(id, dir), \
(SPI_DMA_CHANNEL_INIT(id, dir, DIR, src, dest)), \
(NULL)) \
},
#else
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest)
#endif
#define SPI_BUSY_INIT .busy = false,
#if (CONFIG_XIP)
@ -402,8 +935,7 @@ static void spi_atcspi200_irq_handler(void *arg)
#endif
#define SPI_INIT(n) \
static struct spi_atcspi200_data spi_atcspi200_dev_data_##n = {\
.self_dev = DEVICE_DT_INST_GET(n), \
static struct spi_atcspi200_data spi_atcspi200_dev_data_##n = { \
SPI_CONTEXT_INIT_LOCK(spi_atcspi200_dev_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_atcspi200_dev_data_##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \

View file

@ -11,6 +11,10 @@ LOG_MODULE_REGISTER(spi_atcspi200);
#include <zephyr/device.h>
#include <zephyr/drivers/spi.h>
#ifdef CONFIG_ANDES_SPI_DMA_MODE
#include <zephyr/drivers/dma.h>
#endif
#define REG_TFMAT 0x10
#define REG_TCTRL 0x20
#define REG_CMD 0x24
@ -22,16 +26,16 @@ LOG_MODULE_REGISTER(spi_atcspi200);
#define REG_TIMIN 0x40
#define REG_CONFIG 0x7c
#define SPI_TFMAT(base) (base + 0x10)
#define SPI_TCTRL(base) (base + 0x20)
#define SPI_CMD(base) (base + 0x24)
#define SPI_DATA(base) (base + 0x2c)
#define SPI_CTRL(base) (base + 0x30)
#define SPI_STAT(base) (base + 0x34)
#define SPI_INTEN(base) (base + 0x38)
#define SPI_INTST(base) (base + 0x3c)
#define SPI_TIMIN(base) (base + 0x40)
#define SPI_CONFIG(base) (base + 0x7c)
#define SPI_TFMAT(base) (base + REG_TFMAT)
#define SPI_TCTRL(base) (base + REG_TCTRL)
#define SPI_CMD(base) (base + REG_CMD)
#define SPI_DATA(base) (base + REG_DATA)
#define SPI_CTRL(base) (base + REG_CTRL)
#define SPI_STAT(base) (base + REG_STAT)
#define SPI_INTEN(base) (base + REG_INTEN)
#define SPI_INTST(base) (base + REG_INTST)
#define SPI_TIMIN(base) (base + REG_TIMIN)
#define SPI_CONFIG(base) (base + REG_CONFIG)
/* Field mask of SPI transfer format register */
#define TFMAT_DATA_LEN_OFFSET (8)