drivers/timer: New ARM SysTick driver

Newer, and much smaller driver written to the new timer API.  Supports
all the features the old one did (including shutting off the clock
when clock_always_on is disabled), should be faster in practice, and
should be significantly more accurate due to the "lost cycle" trick
applied in z_clock_set_timeout().

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
This commit is contained in:
Andy Ross 2018-09-30 08:48:11 -07:00 committed by Anas Nashif
parent 4638652214
commit c535300539

View file

@ -1,806 +1,149 @@
/*
* Copyright (c) 2013-2015 Wind River Systems, Inc.
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief ARM Cortex-M systick device driver
*
* This module implements the kernel's CORTEX-M ARM's systick device driver.
* It provides the standard kernel "system clock driver" interfaces.
*
* The driver utilizes systick to provide kernel ticks.
*
* \INTERNAL IMPLEMENTATION DETAILS
* The systick device provides a 24-bit clear-on-write, decrementing,
* wrap-on-zero counter. Only edge sensitive triggered interrupt is supported.
*
*/
#include <kernel.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <misc/__assert.h>
#include <sys_clock.h>
#include <drivers/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <arch/arm/cortex_m/cmsis.h>
#include <kernel_structs.h>
/* running total of timer count */
static volatile u32_t clock_accumulated_count;
void _ExcExit(void);
/*
* A board support package's board.h header must provide definitions for the
* following constants:
*
* CONFIG_SYSTICK_CLOCK_FREQ
*
* This is the sysTick input clock frequency.
*/
/* Minimum cycles in the future to try to program. */
#define MIN_DELAY 512
#include "legacy_api.h"
#define COUNTER_MAX 0x00ffffff
#define TIMER_STOPPED 0xff000000
#ifdef CONFIG_TICKLESS_IDLE
#define TIMER_MODE_PERIODIC 0 /* normal running mode */
#define TIMER_MODE_ONE_SHOT 1 /* emulated, since sysTick has 1 mode */
#define CYC_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
#define IDLE_NOT_TICKLESS 0 /* non-tickless idle mode */
#define IDLE_TICKLESS 1 /* tickless idle mode */
#endif /* CONFIG_TICKLESS_IDLE */
#define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && \
!IS_ENABLED(CONFIG_QEMU_TICKLESS_WORKAROUND))
extern void _ExcExit(void);
#ifdef CONFIG_SYS_POWER_MANAGEMENT
extern s32_t _NanoIdleValGet(void);
extern void _NanoIdleValClear(void);
extern void _sys_power_save_idle_exit(s32_t ticks);
#endif
static struct k_spinlock lock;
static s32_t _sys_idle_elapsed_ticks = 1;
static u32_t last_load;
#ifdef CONFIG_TICKLESS_IDLE
static u32_t __noinit default_load_value; /* default count */
#ifndef CONFIG_TICKLESS_KERNEL
static u32_t idle_original_count;
#endif
#ifdef CONFIG_TICKLESS_KERNEL
static u32_t timer_overflow;
#endif
static u32_t __noinit max_system_ticks;
static u32_t idle_original_ticks;
static u32_t __noinit max_load_value;
static u32_t __noinit timer_idle_skew;
static unsigned char timer_mode = TIMER_MODE_PERIODIC;
static unsigned char idle_mode = IDLE_NOT_TICKLESS;
#endif /* CONFIG_TICKLESS_IDLE */
static u32_t cycle_count;
#if defined(CONFIG_TICKLESS_IDLE) || \
defined(CONFIG_SYSTEM_CLOCK_DISABLE)
static u32_t announced_cycles;
/**
*
* @brief Stop the timer
*
* This routine disables the systick counter.
*
* @return N/A
*/
static ALWAYS_INLINE void sysTickStop(void)
static volatile u32_t ctrl_cache; /* overflow bit clears on read! */
static u32_t elapsed(void)
{
u32_t reg;
u32_t val, ov;
/*
* Disable the counter and its interrupt while preserving the
* remaining bits.
*/
reg = SysTick->CTRL;
reg &= ~(SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk);
SysTick->CTRL = reg;
do {
val = SysTick->VAL & COUNTER_MAX;
ctrl_cache |= SysTick->CTRL;
} while (SysTick->VAL > val);
ov = (ctrl_cache & SysTick_CTRL_COUNTFLAG_Msk) ? last_load : 0;
return (last_load - val) + ov;
}
#endif /* CONFIG_TICKLESS_IDLE || CONFIG_SYSTEM_CLOCK_DISABLE */
#ifdef CONFIG_TICKLESS_IDLE
/**
*
* @brief Start the timer
*
* This routine enables the systick counter.
*
* @return N/A
*/
static ALWAYS_INLINE void sysTickStart(void)
/* Callout out of platform assembly, not hooked via IRQ_CONNECT... */
void _timer_int_handler(void *arg)
{
u32_t reg;
ARG_UNUSED(arg);
u32_t dticks;
/*
* Enable the counter, its interrupt and set the clock source to be
* the system clock while preserving the remaining bits.
*/
reg = SysTick->CTRL; /* countflag is cleared by this read */
cycle_count += last_load;
dticks = (cycle_count - announced_cycles) / CYC_PER_TICK;
announced_cycles += dticks * CYC_PER_TICK;
reg |= SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_CLKSOURCE_Msk;
SysTick->CTRL = reg;
}
ctrl_cache = SysTick->CTRL; /* Reset overflow flag */
ctrl_cache = 0;
/**
*
* @brief Get the current counter value
*
* This routine gets the value from the timer's current value register. This
* value is the 'time' remaining to decrement before the timer triggers an
* interrupt.
*
* @return the current counter value
*/
static ALWAYS_INLINE u32_t sysTickCurrentGet(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
/*
* Counter can rollover if irqs are locked for too long.
* Return 0 to indicate programmed cycles have expired.
*/
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) || (timer_overflow)) {
timer_overflow = 1;
return 0;
}
#endif
return SysTick->VAL;
}
#ifdef CONFIG_TICKLESS_KERNEL
static ALWAYS_INLINE void sys_tick_reload(void)
{
/* Triggers immediate reload of count when clock is already running */
SysTick->VAL = 0;
}
#endif
/**
*
* @brief Get the reload/countdown value
*
* This routine returns the value from the reload value register.
*
* @return the counter's initial count/wraparound value
*/
static ALWAYS_INLINE u32_t sysTickReloadGet(void)
{
return SysTick->LOAD;
}
#endif /* CONFIG_TICKLESS_IDLE */
/**
*
* @brief Set the reload/countdown value
*
* This routine sets value from which the timer will count down and also
* sets the timer's current value register to zero.
* Note that the value given is assumed to be valid (i.e., count < (1<<24)).
*
* @return N/A
*/
static ALWAYS_INLINE void sysTickReloadSet(
u32_t count /* count from which timer is to count down */
)
{
/*
* Write the reload value and clear the current value in preparation
* for enabling the timer.
* The countflag in the control/status register is also cleared by
* this operation.
*/
SysTick->LOAD = count;
SysTick->VAL = 0; /* also clears the countflag */
}
/**
*
* @brief System clock tick handler
*
* This routine handles the system clock tick interrupt. A TICK_EVENT event
* is pushed onto the kernel stack.
*
* The symbol for this routine is either _timer_int_handler.
*
* @return N/A
*/
void _timer_int_handler(void *unused)
{
ARG_UNUSED(unused);
#ifdef CONFIG_EXECUTION_BENCHMARKING
extern void read_timer_start_of_tick_handler(void);
read_timer_start_of_tick_handler();
#endif
sys_trace_isr_enter();
#ifdef CONFIG_SYS_POWER_MANAGEMENT
s32_t numIdleTicks;
/*
* All interrupts are disabled when handling idle wakeup.
* For tickless idle, this ensures that the calculation and programming
* of
* the device for the next timer deadline is not interrupted.
* For non-tickless idle, this ensures that the clearing of the kernel
* idle
* state is not interrupted.
* In each case, _sys_power_save_idle_exit is called with interrupts
* disabled.
*/
__asm__(" cpsid i"); /* PRIMASK = 1 */
#ifdef CONFIG_TICKLESS_IDLE
#if defined(CONFIG_TICKLESS_KERNEL)
if (!idle_original_ticks) {
if (_sys_clock_always_on) {
z_tick_set(z_clock_uptime());
/* clear overflow tracking flag as it is accounted */
timer_overflow = 0;
sysTickStop();
idle_original_ticks = max_system_ticks;
sysTickReloadSet(max_load_value);
sysTickStart();
sys_tick_reload();
}
__asm__(" cpsie i"); /* re-enable interrupts (PRIMASK = 0) */
_ExcExit();
return;
}
idle_mode = IDLE_NOT_TICKLESS;
_sys_idle_elapsed_ticks = idle_original_ticks;
/*
* Clear programmed ticks before announcing elapsed time so
* that recursive calls to _update_elapsed_time() will not
* announce already consumed elapsed time
*/
idle_original_ticks = 0;
z_clock_announce(_sys_idle_elapsed_ticks);
/* z_clock_announce() could cause new programming */
if (!idle_original_ticks && _sys_clock_always_on) {
z_tick_set(z_clock_uptime());
/* clear overflow tracking flag as it is accounted */
timer_overflow = 0;
sysTickStop();
sysTickReloadSet(max_load_value);
sysTickStart();
sys_tick_reload();
}
#else
/*
* If this a wakeup from a completed tickless idle or after
* z_clock_idle_exit has processed a partial idle, return
* to the normal tick cycle.
*/
if (timer_mode == TIMER_MODE_ONE_SHOT) {
sysTickStop();
sysTickReloadSet(default_load_value);
sysTickStart();
timer_mode = TIMER_MODE_PERIODIC;
}
/* set the number of elapsed ticks and announce them to the kernel */
if (idle_mode == IDLE_TICKLESS) {
/* tickless idle completed without interruption */
idle_mode = IDLE_NOT_TICKLESS;
_sys_idle_elapsed_ticks =
idle_original_ticks + 1; /* actual # of idle ticks */
z_clock_announce(_sys_idle_elapsed_ticks);
} else {
_sys_idle_elapsed_ticks = 1;
z_clock_announce(_sys_idle_elapsed_ticks);
}
/* accumulate total counter value */
clock_accumulated_count += default_load_value * _sys_idle_elapsed_ticks;
#endif
#else /* !CONFIG_TICKLESS_IDLE */
/*
* No tickless idle:
* Update the total tick count and announce this tick to the kernel.
*/
clock_accumulated_count += sys_clock_hw_cycles_per_tick();
z_clock_announce(_sys_idle_elapsed_ticks);
#endif /* CONFIG_TICKLESS_IDLE */
numIdleTicks = _NanoIdleValGet(); /* get # of idle ticks requested */
if (numIdleTicks) {
_NanoIdleValClear(); /* clear kernel idle setting */
/*
* Complete idle processing.
* Note that for tickless idle, nothing will be done in
* z_clock_idle_exit.
*/
_sys_power_save_idle_exit(numIdleTicks);
}
__asm__(" cpsie i"); /* re-enable interrupts (PRIMASK = 0) */
#else /* !CONFIG_SYS_POWER_MANAGEMENT */
/* accumulate total counter value */
clock_accumulated_count += sys_clock_hw_cycles_per_tick();
/*
* one more tick has occurred -- don't need to do anything special since
* timer is already configured to interrupt on the following tick
*/
z_clock_announce(_sys_idle_elapsed_ticks);
#endif /* CONFIG_SYS_POWER_MANAGEMENT */
#ifdef CONFIG_EXECUTION_BENCHMARKING
extern void read_timer_end_of_tick_handler(void);
read_timer_end_of_tick_handler();
#endif
extern void _ExcExit(void);
z_clock_announce(TICKLESS ? dticks : 1);
_ExcExit();
}
#ifdef CONFIG_TICKLESS_KERNEL
u32_t _get_program_time(void)
{
return idle_original_ticks;
}
u32_t _get_remaining_program_time(void)
{
if (idle_original_ticks == 0) {
return 0;
}
return (u32_t)ceiling_fraction((u32_t)sysTickCurrentGet(),
default_load_value);
}
u32_t _get_elapsed_program_time(void)
{
if (idle_original_ticks == 0) {
return 0;
}
return idle_original_ticks - (sysTickCurrentGet() / default_load_value);
}
void _set_time(u32_t time)
{
if (!time) {
idle_original_ticks = 0;
return;
}
idle_original_ticks = time > max_system_ticks ? max_system_ticks : time;
z_tick_set(z_clock_uptime());
/* clear overflow tracking flag as it is accounted */
timer_overflow = 0;
sysTickStop();
sysTickReloadSet(idle_original_ticks * default_load_value);
sysTickStart();
sys_tick_reload();
}
void _enable_sys_clock(void)
{
if (!(SysTick->CTRL & SysTick_CTRL_ENABLE_Msk)) {
sysTickStart();
sys_tick_reload();
}
}
static inline u64_t get_elapsed_count(void)
{
u64_t elapsed;
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) || (timer_overflow)) {
elapsed = SysTick->LOAD;
/* Keep track of overflow till it is accounted in
* z_tick_get() as COUNTFLAG bit is clear on read
*/
timer_overflow = 1;
} else {
elapsed = (SysTick->LOAD - SysTick->VAL);
}
elapsed += (z_tick_get() * default_load_value);
return elapsed;
}
u64_t z_clock_uptime(void)
{
return get_elapsed_count() / default_load_value;
}
#endif
#ifdef CONFIG_TICKLESS_IDLE
/**
*
* @brief Initialize the tickless idle feature
*
* This routine initializes the tickless idle feature by calculating the
* necessary hardware-specific parameters.
*
* Note that the maximum number of ticks that can elapse during a "tickless idle"
* is limited by <default_load_value>. The larger the value (the lower the
* tick frequency), the fewer elapsed ticks during a "tickless idle".
* Conversely, the smaller the value (the higher the tick frequency), the
* more elapsed ticks during a "tickless idle".
*
* @return N/A
*/
static void sysTickTicklessIdleInit(void)
{
/* enable counter, disable interrupt and set clock src to system clock
*/
u32_t ctrl = SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_CLKSOURCE_Msk;
volatile u32_t dummy; /* used to help determine the 'skew time' */
/* store the default reload value (which has already been set) */
default_load_value = sysTickReloadGet();
/* calculate the max number of ticks with this 24-bit H/W counter */
max_system_ticks = 0x00ffffff / default_load_value;
/* determine the associated load value */
max_load_value = max_system_ticks * default_load_value;
/*
* Calculate the skew from switching the timer in and out of idle mode.
* The following sequence is emulated:
* 1. Stop the timer.
* 2. Read the current counter value.
* 3. Calculate the new/remaining counter reload value.
* 4. Load the new counter value.
* 5. Set the timer mode to periodic/one-shot.
* 6. Start the timer.
*
* The timer must be running for this to work, so enable the
* systick counter without generating interrupts, using the processor
*clock.
* Note that the reload value has already been set by the caller.
*/
SysTick->CTRL |= ctrl;
__ISB();
timer_idle_skew = sysTickCurrentGet(); /* start of skew time */
SysTick->CTRL |= ctrl; /* normally sysTickStop() */
dummy = sysTickCurrentGet(); /* emulate sysTickReloadSet() */
/* emulate calculation of the new counter reload value */
if ((dummy == 1) || (dummy == default_load_value)) {
dummy = max_system_ticks - 1;
dummy += max_load_value - default_load_value;
} else {
dummy = dummy - 1;
dummy += dummy * default_load_value;
}
/* _sysTickStart() without interrupts */
SysTick->CTRL |= ctrl;
timer_mode = TIMER_MODE_PERIODIC;
/* skew time calculation for down counter (assumes no rollover) */
timer_idle_skew -= sysTickCurrentGet();
/* restore the previous sysTick state */
sysTickStop();
sysTickReloadSet(default_load_value);
#ifdef CONFIG_TICKLESS_KERNEL
idle_original_ticks = 0;
#endif
}
/**
*
* @brief Place the system timer into idle state
*
* Re-program the timer to enter into the idle state for the given number of
* ticks. It is set to a "one shot" mode where it will fire in the number of
* ticks supplied or the maximum number of ticks that can be programmed into
* hardware. A value of -1 will result in the maximum number of ticks.
*
* @return N/A
*/
void _timer_idle_enter(s32_t ticks /* system ticks */
)
{
#ifdef CONFIG_TICKLESS_KERNEL
if (ticks != K_FOREVER) {
/* Need to reprogram only if current program is smaller */
if (ticks > idle_original_ticks) {
_set_time(ticks);
}
} else {
sysTickStop();
idle_original_ticks = 0;
}
idle_mode = IDLE_TICKLESS;
#else
sysTickStop();
/*
* We're being asked to have the timer fire in "ticks" from now. To
* maintain accuracy we must account for the remaining time left in the
* timer. So we read the count out of it and add it to the requested
* time out
*/
idle_original_count = sysTickCurrentGet() - timer_idle_skew;
if ((ticks == -1) || (ticks > max_system_ticks)) {
/*
* We've been asked to fire the timer so far in the future that
* the required count value would not fit in the 24-bit reload
* register.
* Instead, we program for the maximum programmable interval
* minus one system tick to prevent overflow when the left over
* count read earlier is added.
*/
idle_original_count += max_load_value - default_load_value;
idle_original_ticks = max_system_ticks - 1;
} else {
/*
* leave one tick of buffer to have to time react when coming
* back
*/
idle_original_ticks = ticks - 1;
idle_original_count += idle_original_ticks * default_load_value;
}
/*
* Set timer to virtual "one shot" mode - sysTick does not have multiple
* modes, so the reload value is simply changed.
*/
timer_mode = TIMER_MODE_ONE_SHOT;
idle_mode = IDLE_TICKLESS;
sysTickReloadSet(idle_original_count);
sysTickStart();
#endif
}
/**
*
* @brief Handling of tickless idle when interrupted
*
* The routine, called by _sys_power_save_idle_exit, is responsible for taking
* the timer out of idle mode and generating an interrupt at the next
* tick interval. It is expected that interrupts have been disabled.
*
* Note that in this routine, _sys_idle_elapsed_ticks must be zero because the
* ticker has done its work and consumed all the ticks. This has to be true
* otherwise idle mode wouldn't have been entered in the first place.
*
* @return N/A
*/
void z_clock_idle_exit(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
if (idle_mode == IDLE_TICKLESS) {
idle_mode = IDLE_NOT_TICKLESS;
if (!idle_original_ticks && _sys_clock_always_on) {
z_tick_set(z_clock_uptime());
timer_overflow = 0;
sysTickReloadSet(max_load_value);
sysTickStart();
sys_tick_reload();
}
}
#else
u32_t count; /* timer's current count register value */
if (timer_mode == TIMER_MODE_PERIODIC) {
/*
* The timer interrupt handler is handling a completed tickless
* idle or this has been called by mistake; there's nothing to
* do here.
*/
return;
}
sysTickStop();
/* timer is in idle mode, adjust the ticks expired */
count = sysTickCurrentGet();
if ((count == 0) || (SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk)) {
/*
* The timer expired and/or wrapped around. Re-set the timer to
* its default value and mode.
*/
sysTickReloadSet(default_load_value);
timer_mode = TIMER_MODE_PERIODIC;
/*
* Announce elapsed ticks to the kernel. Note we are guaranteed
* that the timer ISR will execute before the tick event is
* serviced, so _sys_idle_elapsed_ticks is adjusted to account
* for it.
*/
_sys_idle_elapsed_ticks = idle_original_ticks - 1;
z_clock_announce(_sys_idle_elapsed_ticks);
} else {
u32_t elapsed; /* elapsed "counter time" */
u32_t remaining; /* remaining "counter time" */
elapsed = idle_original_count - count;
remaining = elapsed % default_load_value;
/* ensure that the timer will interrupt at the next tick */
if (remaining == 0) {
/*
* Idle was interrupted on a tick boundary. Re-set the
* timer to its default value and mode.
*/
sysTickReloadSet(default_load_value);
timer_mode = TIMER_MODE_PERIODIC;
} else if (count > remaining) {
/*
* There is less time remaining to the next tick
* boundary than time left for idle. Leave in "one
* shot" mode.
*/
sysTickReloadSet(remaining);
}
_sys_idle_elapsed_ticks = elapsed / default_load_value;
if (_sys_idle_elapsed_ticks) {
z_clock_announce(_sys_idle_elapsed_ticks);
}
}
clock_accumulated_count += default_load_value * _sys_idle_elapsed_ticks;
idle_mode = IDLE_NOT_TICKLESS;
sysTickStart();
#endif
}
#endif /* CONFIG_TICKLESS_IDLE */
/**
*
* @brief Initialize and enable the system clock
*
* This routine is used to program the systick to deliver interrupts at the
* rate specified via the 'sys_clock_us_per_tick' global variable.
*
* @return 0
*/
int z_clock_driver_init(struct device *device)
{
/* enable counter, interrupt and set clock src to system clock */
u32_t ctrl = SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_CLKSOURCE_Msk;
ARG_UNUSED(device);
/*
* Determine the reload value to achieve the configured tick rate.
*/
/* systick supports 24-bit H/W counter */
__ASSERT(sys_clock_hw_cycles_per_tick() <= (1 << 24),
"sys_clock_hw_cycles_per_tick() too large");
sysTickReloadSet(sys_clock_hw_cycles_per_tick() - 1);
#ifdef CONFIG_TICKLESS_IDLE
/* calculate hardware-specific parameters for tickless idle */
sysTickTicklessIdleInit();
#endif /* CONFIG_TICKLESS_IDLE */
NVIC_SetPriority(SysTick_IRQn, _IRQ_PRIO_OFFSET);
SysTick->CTRL = ctrl;
SysTick->VAL = 0; /* triggers immediate reload of count */
last_load = CYC_PER_TICK;
SysTick->LOAD = last_load;
SysTick->VAL = 0; /* resets timer to last_load */
SysTick->CTRL |= (SysTick_CTRL_ENABLE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_CLKSOURCE_Msk);
return 0;
}
/**
*
* @brief Read the platform's timer hardware
*
* This routine returns the current time in terms of timer hardware clock
* cycles.
*
* @return up counter of elapsed clock cycles
*
* \INTERNAL WARNING
* systick counter is a 24-bit down counter which is reset to "reload" value
* once it reaches 0.
*/
void z_clock_set_timeout(s32_t ticks, bool idle)
{
/* Fast CPUs and a 24 bit counter mean that even idle systems
* need to wake up multiple times per second. If the kernel
* allows us to miss tick announcements in idle, then shut off
* the counter. (Note: we can assume if idle==true that
* interrupts are already disabled)
*/
if (IS_ENABLED(CONFIG_TICKLESS_IDLE) && idle && ticks == K_FOREVER) {
SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
last_load = TIMER_STOPPED;
return;
}
#if defined(CONFIG_TICKLESS_KERNEL) && !defined(CONFIG_QEMU_TICKLESS_WORKAROUND)
u32_t delay;
ticks = min(MAX_TICKS, max(ticks - 1, 0));
/* Desired delay in the future */
delay = (ticks == 0) ? MIN_DELAY : ticks * CYC_PER_TICK;
k_spinlock_key_t key = k_spin_lock(&lock);
cycle_count += elapsed();
/* Round delay up to next tick boundary */
delay = delay + (cycle_count - announced_cycles);
delay = ((delay + CYC_PER_TICK - 1) / CYC_PER_TICK) * CYC_PER_TICK;
last_load = delay - (cycle_count - announced_cycles);
SysTick->LOAD = last_load;
SysTick->VAL = 0; /* resets timer to last_load */
k_spin_unlock(&lock, key);
#endif
}
u32_t z_clock_elapsed(void)
{
if (!TICKLESS) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
u32_t cyc = elapsed() + cycle_count - announced_cycles;
k_spin_unlock(&lock, key);
return cyc / CYC_PER_TICK;
}
u32_t _timer_cycle_get_32(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return (u32_t) get_elapsed_count();
#else
u32_t cac, count;
k_spinlock_key_t key = k_spin_lock(&lock);
u32_t ret = elapsed() + cycle_count;
do {
cac = clock_accumulated_count;
#ifdef CONFIG_TICKLESS_IDLE
/* When we leave a tickless period the reload value of
* the timer can be set to a remaining value to wait
* until end of tick. (see z_clock_idle_exit). The
* remaining value is always smaller than
* default_load_value. In this case the time elapsed
* until the timer restart was not yet added to
* clock_accumulated_count. To retrieve a correct
* cycle count we must therefore consider the number
* of cycle since current tick period start and not
* only the cycle number since the timer restart.
*/
if (SysTick->LOAD < default_load_value) {
count = default_load_value;
} else {
count = SysTick->LOAD;
}
count -= SysTick->VAL;
#else
count = SysTick->LOAD - SysTick->VAL;
#endif
__ISB();
} while (cac != clock_accumulated_count);
return cac + count;
#endif
k_spin_unlock(&lock, key);
return ret;
}
#ifdef CONFIG_SYSTEM_CLOCK_DISABLE
void z_clock_idle_exit(void)
{
if (last_load == TIMER_STOPPED) {
SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;
}
}
/**
*
* @brief Stop announcing ticks into the kernel
*
* This routine disables the systick so that timer interrupts are no
* longer delivered.
*
* @return N/A
*/
void sys_clock_disable(void)
{
unsigned int key; /* interrupt lock level */
key = irq_lock();
/* disable the systick counter and systick interrupt */
sysTickStop();
irq_unlock(key);
SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;
}
#endif /* CONFIG_SYSTEM_CLOCK_DISABLE */