sd: Changes framework to support MMC

- Adds mmc.c
- Edits sd.c to init and probe MMC
- Adds mmc init to sd_init
- Some functions from sdmmc.c should be in sd_ops because
they can be used by both sdmmc and mmc.

Signed-off-by: Declan Snyder <declan.snyder@nxp.com>
This commit is contained in:
Declan Snyder 2022-08-30 11:13:05 -05:00 committed by Carles Cufí
parent 3bc095a810
commit cad243d59e
7 changed files with 559 additions and 453 deletions

View file

@ -7,4 +7,6 @@ if (CONFIG_SD_STACK)
zephyr_library_sources(sd.c sd_ops.c)
zephyr_library_sources_ifdef(CONFIG_SDMMC_STACK sdmmc.c)
zephyr_library_sources_ifdef(CONFIG_SDIO_STACK sdio.c)
zephyr_library_sources_ifdef(CONFIG_MMC_STACK mmc.c)
endif()

40
subsys/sd/mmc.c Normal file
View file

@ -0,0 +1,40 @@
/*
* Copyright 2022 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/sdhc.h>
#include <zephyr/logging/log.h>
#include <zephyr/sd/mmc.h>
#include <zephyr/sd/sd.h>
#include <zephyr/sd/sd_spec.h>
#include <zephyr/zephyr.h>
#include "sd_ops.h"
#include "sd_utils.h"
inline int mmc_write_blocks(struct sd_card *card, const uint8_t *wbuf, uint32_t start_block,
uint32_t num_blocks)
{
return card_write_blocks(card, wbuf, start_block, num_blocks);
}
inline int mmc_read_blocks(struct sd_card *card, uint8_t *rbuf, uint32_t start_block,
uint32_t num_blocks)
{
return card_read_blocks(card, rbuf, start_block, num_blocks);
}
inline int mmc_ioctl(struct sd_card *card, uint8_t cmd, void *buf)
{
return card_ioctl(card, cmd, buf);
}
/*
* Initialize MMC card for use with subsystem
*/
int mmc_card_init(struct sd_card *card)
{
return -ENOTSUP;
}

View file

@ -15,6 +15,7 @@
#include "sd_utils.h"
#include "sd_init.h"
LOG_MODULE_REGISTER(sd, CONFIG_SD_LOG_LEVEL);
/* Idle all cards on bus. Can be used to clear errors on cards */
@ -24,6 +25,7 @@ static inline int sd_idle(struct sd_card *card)
/* Reset card with CMD0 */
cmd.opcode = SD_GO_IDLE_STATE;
cmd.arg = 0x0;
cmd.response_type = (SD_RSP_TYPE_NONE | SD_SPI_RSP_TYPE_R1);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
return sdhc_request(card->sdhc, &cmd, NULL);
@ -164,19 +166,25 @@ static int sd_init_io(struct sd_card *card)
static int sd_command_init(struct sd_card *card)
{
int ret;
/*
* We must wait 74 clock cycles, per SD spec, to use card after power
* on. At 400000KHz, this is a 185us delay. Wait 1ms to be safe.
*/
sd_delay(1);
/*
* Start card initialization and identification
* flow described in section 3.6 of SD specification
* Common to SDIO and SDMMC. Some eMMC chips break the
* specification and expect something like this too.
*/
ret = sd_common_init(card);
if (ret) {
return ret;
}
#ifdef CONFIG_SDIO_STACK
/* Attempt to initialize SDIO card */
if (!sdio_card_init(card)) {
@ -189,6 +197,16 @@ static int sd_command_init(struct sd_card *card)
return 0;
}
#endif /* CONFIG_SDIO_STACK */
#ifdef CONFIG_MMC_STACK
ret = sd_idle(card);
if (ret) {
LOG_ERR("Card error on CMD0");
return ret;
}
if (!mmc_card_init(card)) {
return 0;
}
#endif /* CONFIG_MMC_STACK */
/* Unknown card type */
return -ENOTSUP;
}

View file

@ -15,4 +15,6 @@ int sdio_card_init(struct sd_card *card);
int sdmmc_card_init(struct sd_card *card);
int mmc_card_init(struct sd_card *card);
#endif /* ZEPHYR_SUBSYS_SD_INIT_PRIV_H_ */

View file

@ -4,34 +4,93 @@
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/zephyr.h>
#include <zephyr/drivers/disk.h>
#include <zephyr/drivers/sdhc.h>
#include <zephyr/logging/log.h>
#include <zephyr/sd/sd.h>
#include <zephyr/sd/sd_spec.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/kernel.h>
#include "sd_utils.h"
LOG_MODULE_DECLARE(sd, CONFIG_SD_LOG_LEVEL);
static inline void sdmmc_decode_csd(struct sd_csd *csd,
uint32_t *raw_csd, uint32_t *blk_count, uint32_t *blk_size)
/* Read card status. Return 0 if card is inactive */
int sdmmc_read_status(struct sd_card *card)
{
struct sdhc_command cmd = {0};
int ret;
cmd.opcode = SD_SEND_STATUS;
if (!card->host_props.is_spi) {
cmd.arg = (card->relative_addr << 16U);
}
cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R2);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
ret = sdhc_request(card->sdhc, &cmd, NULL);
if (ret) {
return SD_RETRY;
}
if (card->host_props.is_spi) {
/* Check R2 response bits */
if ((cmd.response[0U] & SDHC_SPI_R2_CARD_LOCKED) ||
(cmd.response[0U] & SDHC_SPI_R2_UNLOCK_FAIL)) {
return -EACCES;
} else if ((cmd.response[0U] & SDHC_SPI_R2_WP_VIOLATION) ||
(cmd.response[0U] & SDHC_SPI_R2_ERASE_PARAM) ||
(cmd.response[0U] & SDHC_SPI_R2_OUT_OF_RANGE)) {
return -EINVAL;
} else if ((cmd.response[0U] & SDHC_SPI_R2_ERR) ||
(cmd.response[0U] & SDHC_SPI_R2_CC_ERR) ||
(cmd.response[0U] & SDHC_SPI_R2_ECC_FAIL)) {
return -EIO;
}
/* Otherwise, no error in R2 response */
return 0;
}
/* Otherwise, check native card response */
if ((cmd.response[0U] & SD_R1_RDY_DATA) &&
(SD_R1_CURRENT_STATE(cmd.response[0U]) == SDMMC_R1_TRANSFER)) {
return 0;
}
/* Valid response, the card is busy */
return -EBUSY;
}
/* Waits for SD card to be ready for data. Returns 0 if card is ready */
int sdmmc_wait_ready(struct sd_card *card)
{
int ret, timeout = CONFIG_SD_DATA_TIMEOUT * 1000;
bool busy = true;
do {
busy = sdhc_card_busy(card->sdhc);
if (!busy) {
/* Check card status */
ret = sd_retry(sdmmc_read_status, card, CONFIG_SD_RETRY_COUNT);
busy = (ret != 0);
} else {
/* Delay 125us before polling again */
k_busy_wait(125);
timeout -= 125;
}
} while (busy && (timeout > 0));
return busy;
}
static inline void sdmmc_decode_csd(struct sd_csd *csd, uint32_t *raw_csd, uint32_t *blk_count,
uint32_t *blk_size)
{
uint32_t tmp_blk_count, tmp_blk_size;
csd->csd_structure = (uint8_t)((raw_csd[3U] &
0xC0000000U) >> 30U);
csd->read_time1 = (uint8_t)((raw_csd[3U] &
0xFF0000U) >> 16U);
csd->read_time2 = (uint8_t)((raw_csd[3U] &
0xFF00U) >> 8U);
csd->xfer_rate = (uint8_t)(raw_csd[3U] &
0xFFU);
csd->cmd_class = (uint16_t)((raw_csd[2U] &
0xFFF00000U) >> 20U);
csd->read_blk_len = (uint8_t)((raw_csd[2U] &
0xF0000U) >> 16U);
csd->csd_structure = (uint8_t)((raw_csd[3U] & 0xC0000000U) >> 30U);
csd->read_time1 = (uint8_t)((raw_csd[3U] & 0xFF0000U) >> 16U);
csd->read_time2 = (uint8_t)((raw_csd[3U] & 0xFF00U) >> 8U);
csd->xfer_rate = (uint8_t)(raw_csd[3U] & 0xFFU);
csd->cmd_class = (uint16_t)((raw_csd[2U] & 0xFFF00000U) >> 20U);
csd->read_blk_len = (uint8_t)((raw_csd[2U] & 0xF0000U) >> 16U);
if (raw_csd[2U] & 0x8000U) {
csd->flags |= SD_CSD_READ_BLK_PARTIAL_FLAG;
}
@ -47,24 +106,16 @@ static inline void sdmmc_decode_csd(struct sd_csd *csd,
switch (csd->csd_structure) {
case 0:
csd->device_size = (uint32_t)((raw_csd[2U] &
0x3FFU) << 2U);
csd->device_size |= (uint32_t)((raw_csd[1U] &
0xC0000000U) >> 30U);
csd->read_current_min = (uint8_t)((raw_csd[1U] &
0x38000000U) >> 27U);
csd->read_current_max = (uint8_t)((raw_csd[1U] &
0x7000000U) >> 24U);
csd->write_current_min = (uint8_t)((raw_csd[1U] &
0xE00000U) >> 20U);
csd->write_current_max = (uint8_t)((raw_csd[1U] &
0x1C0000U) >> 18U);
csd->dev_size_mul = (uint8_t)((raw_csd[1U] &
0x38000U) >> 15U);
csd->device_size = (uint32_t)((raw_csd[2U] & 0x3FFU) << 2U);
csd->device_size |= (uint32_t)((raw_csd[1U] & 0xC0000000U) >> 30U);
csd->read_current_min = (uint8_t)((raw_csd[1U] & 0x38000000U) >> 27U);
csd->read_current_max = (uint8_t)((raw_csd[1U] & 0x7000000U) >> 24U);
csd->write_current_min = (uint8_t)((raw_csd[1U] & 0xE00000U) >> 20U);
csd->write_current_max = (uint8_t)((raw_csd[1U] & 0x1C0000U) >> 18U);
csd->dev_size_mul = (uint8_t)((raw_csd[1U] & 0x38000U) >> 15U);
/* Get card total block count and block size. */
tmp_blk_count = ((csd->device_size + 1U) <<
(csd->dev_size_mul + 2U));
tmp_blk_count = ((csd->device_size + 1U) << (csd->dev_size_mul + 2U));
tmp_blk_size = (1U << (csd->read_blk_len));
if (tmp_blk_size != SDMMC_DEFAULT_BLOCK_SIZE) {
tmp_blk_count = (tmp_blk_count * tmp_blk_size);
@ -81,10 +132,8 @@ static inline void sdmmc_decode_csd(struct sd_csd *csd,
case 1:
tmp_blk_size = SDMMC_DEFAULT_BLOCK_SIZE;
csd->device_size = (uint32_t)((raw_csd[2U] &
0x3FU) << 16U);
csd->device_size |= (uint32_t)((raw_csd[1U] &
0xFFFF0000U) >> 16U);
csd->device_size = (uint32_t)((raw_csd[2U] & 0x3FU) << 16U);
csd->device_size |= (uint32_t)((raw_csd[1U] & 0xFFFF0000U) >> 16U);
tmp_blk_count = ((csd->device_size + 1U) * 1024U);
if (blk_count) {
@ -101,14 +150,10 @@ static inline void sdmmc_decode_csd(struct sd_csd *csd,
if ((uint8_t)((raw_csd[1U] & 0x4000U) >> 14U)) {
csd->flags |= SD_CSD_ERASE_BLK_EN_FLAG;
}
csd->erase_size = (uint8_t)((raw_csd[1U] &
0x3F80U) >> 7U);
csd->write_prtect_size = (uint8_t)(raw_csd[1U] &
0x7FU);
csd->write_speed_factor = (uint8_t)((raw_csd[0U] &
0x1C000000U) >> 26U);
csd->write_blk_len = (uint8_t)((raw_csd[0U] &
0x3C00000U) >> 22U);
csd->erase_size = (uint8_t)((raw_csd[1U] & 0x3F80U) >> 7U);
csd->write_prtect_size = (uint8_t)(raw_csd[1U] & 0x7FU);
csd->write_speed_factor = (uint8_t)((raw_csd[0U] & 0x1C000000U) >> 26U);
csd->write_blk_len = (uint8_t)((raw_csd[0U] & 0x3C00000U) >> 22U);
if ((uint8_t)((raw_csd[0U] & 0x200000U) >> 21U)) {
csd->flags |= SD_CSD_WRITE_BLK_PARTIAL_FLAG;
}
@ -127,8 +172,7 @@ static inline void sdmmc_decode_csd(struct sd_csd *csd,
csd->file_fmt = (uint8_t)((raw_csd[0U] & 0xC00U) >> 10U);
}
static inline void sdmmc_decode_cid(struct sd_cid *cid,
uint32_t *raw_cid)
static inline void sdmmc_decode_cid(struct sd_cid *cid, uint32_t *raw_cid)
{
cid->manufacturer = (uint8_t)((raw_cid[3U] & 0xFF000000U) >> 24U);
cid->application = (uint16_t)((raw_cid[3U] & 0xFFFF00U) >> 8U);
@ -148,8 +192,7 @@ static inline void sdmmc_decode_cid(struct sd_cid *cid,
}
/* Reads card id/csd register (in SPI mode) */
static int sdmmc_spi_read_cxd(struct sd_card *card,
uint32_t opcode, uint32_t *cxd)
static int sdmmc_spi_read_cxd(struct sd_card *card, uint32_t opcode, uint32_t *cxd)
{
struct sdhc_command cmd = {0};
struct sdhc_data data = {0};
@ -174,14 +217,13 @@ static int sdmmc_spi_read_cxd(struct sd_card *card,
}
/* Swap endianness of CXD */
for (i = 0; i < 4; i++) {
cxd[3-i] = sys_be32_to_cpu(cxd_be[i]);
cxd[3 - i] = sys_be32_to_cpu(cxd_be[i]);
}
return 0;
}
/* Reads card id/csd register (native SD mode */
static int sdmmc_read_cxd(struct sd_card *card,
uint32_t opcode, uint32_t rca, uint32_t *cxd)
static int sdmmc_read_cxd(struct sd_card *card, uint32_t opcode, uint32_t rca, uint32_t *cxd)
{
struct sdhc_command cmd = {0};
int ret;
@ -196,13 +238,11 @@ static int sdmmc_read_cxd(struct sd_card *card,
LOG_DBG("CMD%d failed: %d", opcode, ret);
return ret;
}
/* CSD/CID is 16 bytes */
memcpy(cxd, cmd.response, 16);
return 0;
}
/* Read card specific data register */
int sdmmc_read_csd(struct sd_card *card)
{
@ -222,21 +262,20 @@ int sdmmc_read_csd(struct sd_card *card)
if (ret) {
return ret;
}
sdmmc_decode_csd(&card_csd, csd,
&card->block_count, &card->block_size);
LOG_DBG("Card block count %d, block size %d",
card->block_count, card->block_size);
sdmmc_decode_csd(&card_csd, csd, &card->block_count, &card->block_size);
LOG_DBG("Card block count %d, block size %d", card->block_count, card->block_size);
return 0;
}
/* Reads card identification register, and decodes it */
int sdmmc_read_cid(struct sd_card *card)
int card_read_cid(struct sd_card *card)
{
uint32_t cid[4];
int ret;
#if defined(CONFIG_SDMMC_STACK) || defined(CONFIG_SDIO_STACK)
/* Keep CID on stack for reduced RAM usage */
struct sd_cid card_cid;
#endif
if (card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_SPI_MODE)) {
ret = sdmmc_spi_read_cxd(card, SD_SEND_CID, cid);
@ -250,11 +289,19 @@ int sdmmc_read_cid(struct sd_card *card)
return ret;
}
#if defined(CONFIG_MMC_STACK)
if (card->type == CARD_MMC) {
LOG_INF("CID decoding not supported for MMC");
return 0;
}
#endif
#if defined(CONFIG_SDMMC_STACK) || defined(CONFIG_SDIO_STACK)
/* Decode SD CID */
sdmmc_decode_cid(&card_cid, cid);
LOG_DBG("Card MID: 0x%x, OID: %c%c", card_cid.manufacturer,
((char *)&card_cid.application)[0],
((char *)&card_cid.application)[1]);
((char *)&card_cid.application)[0], ((char *)&card_cid.application)[1]);
#endif
return 0;
}
@ -379,7 +426,7 @@ int sdmmc_select_card(struct sd_card *card)
int ret;
cmd.opcode = SD_SELECT_CARD;
cmd.arg = (card->relative_addr << 16U);
cmd.arg = ((card->relative_addr) << 16U);
cmd.response_type = SD_RSP_TYPE_R1;
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
@ -395,3 +442,335 @@ int sdmmc_select_card(struct sd_card *card)
}
return 0;
}
/* Helper to send SD app command */
int card_app_command(struct sd_card *card, int relative_card_address)
{
struct sdhc_command cmd = {0};
int ret;
cmd.opcode = SD_APP_CMD;
cmd.arg = relative_card_address << 16U;
cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
ret = sdhc_request(card->sdhc, &cmd, NULL);
if (ret) {
/* We want to retry transmission */
return SD_RETRY;
}
ret = sd_check_response(&cmd);
if (ret) {
LOG_WRN("SD app command failed with R1 response of 0x%X", cmd.response[0]);
return -EIO;
}
/* Check application command flag to determine if card is ready for APP CMD */
if ((!card->host_props.is_spi) && !(cmd.response[0U] & SD_R1_APP_CMD)) {
/* Command succeeded, but card not ready for app command. No APP CMD support */
return -ENOTSUP;
}
return 0;
}
static int card_read(struct sd_card *card, uint8_t *rbuf, uint32_t start_block, uint32_t num_blocks)
{
int ret;
struct sdhc_command cmd = {0};
struct sdhc_data data = {0};
/*
* Note: The SD specification allows for CMD23 to be sent before a
* transfer in order to set the block length (often preferable).
* The specification also requires that CMD12 be sent to stop a transfer.
* However, the host specification defines support for "Auto CMD23" and
* "Auto CMD12", where the host sends CMD23 and CMD12 automatically to
* remove the overhead of interrupts in software from sending these
* commands. Therefore, we will not handle CMD12 or CMD23 at this layer.
* The host SDHC driver is expected to recognize CMD17, CMD18, CMD24,
* and CMD25 as special read/write commands and handle CMD23 and
* CMD12 appropriately.
*/
cmd.opcode = (num_blocks == 1U) ? SD_READ_SINGLE_BLOCK : SD_READ_MULTIPLE_BLOCK;
if (!(card->flags & SD_HIGH_CAPACITY_FLAG)) {
/* SDSC cards require block size in bytes, not blocks */
cmd.arg = start_block * card->block_size;
} else {
cmd.arg = start_block;
}
cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
cmd.retries = CONFIG_SD_DATA_RETRIES;
data.block_addr = start_block;
data.block_size = card->block_size;
data.blocks = num_blocks;
data.data = rbuf;
data.timeout_ms = CONFIG_SD_DATA_TIMEOUT;
LOG_DBG("READ: Sector = %u, Count = %u", start_block, num_blocks);
ret = sdhc_request(card->sdhc, &cmd, &data);
if (ret) {
LOG_ERR("Failed to read from SDMMC %d", ret);
return ret;
}
/* Verify card is back in transfer state after read */
ret = sdmmc_wait_ready(card);
if (ret) {
LOG_ERR("Card did not return to ready state");
k_mutex_unlock(&card->lock);
return -ETIMEDOUT;
}
return 0;
}
/* Reads data from SD card memory card */
int card_read_blocks(struct sd_card *card, uint8_t *rbuf, uint32_t start_block, uint32_t num_blocks)
{
int ret;
uint32_t rlen;
uint32_t sector;
uint8_t *buf_offset;
if ((start_block + num_blocks) > card->block_count) {
return -EINVAL;
}
if (card->type == CARD_SDIO) {
LOG_WRN("SDIO does not support MMC commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&card->lock, K_NO_WAIT);
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
/*
* If the buffer we are provided with is aligned, we can use it
* directly. Otherwise, we need to use the card's internal buffer
* and memcpy the data back out
*/
if ((((uintptr_t)rbuf) & (CONFIG_SDHC_BUFFER_ALIGNMENT - 1)) != 0) {
/* lower bits of address are set, not aligned. Use internal buffer */
LOG_DBG("Unaligned buffer access to SD card may incur performance penalty");
if (sizeof(card->card_buffer) < card->block_size) {
LOG_ERR("Card buffer size needs to be increased for "
"unaligned writes to work");
k_mutex_unlock(&card->lock);
return -ENOBUFS;
}
rlen = sizeof(card->card_buffer) / card->block_size;
sector = 0;
buf_offset = rbuf;
while (sector < num_blocks) {
/* Read from disk to card buffer */
ret = card_read(card, card->card_buffer, sector + start_block, rlen);
if (ret) {
LOG_ERR("Write failed");
k_mutex_unlock(&card->lock);
return ret;
}
/* Copy data from card buffer */
memcpy(buf_offset, card->card_buffer, rlen * card->block_size);
/* Increase sector count and buffer offset */
sector += rlen;
buf_offset += rlen * card->block_size;
}
} else {
/* Aligned buffers can be used directly */
ret = card_read(card, rbuf, start_block, num_blocks);
if (ret) {
LOG_ERR("Card read failed");
k_mutex_unlock(&card->lock);
return ret;
}
}
k_mutex_unlock(&card->lock);
return 0;
}
/*
* Sends ACMD22 (number of written blocks) to see how many blocks were written
* to a card
*/
static int card_query_written(struct sd_card *card, uint32_t *num_written)
{
int ret;
struct sdhc_command cmd = {0};
struct sdhc_data data = {0};
uint32_t *blocks = (uint32_t *)card->card_buffer;
ret = card_app_command(card, card->relative_addr);
if (ret) {
LOG_DBG("App CMD for ACMD22 failed");
return ret;
}
cmd.opcode = SD_APP_SEND_NUM_WRITTEN_BLK;
cmd.arg = 0;
cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
data.block_size = 4U;
data.blocks = 1U;
data.data = blocks;
data.timeout_ms = CONFIG_SD_DATA_TIMEOUT;
ret = sdhc_request(card->sdhc, &cmd, &data);
if (ret) {
LOG_DBG("ACMD22 failed: %d", ret);
return ret;
}
ret = sd_check_response(&cmd);
if (ret) {
LOG_DBG("ACMD22 reports error");
return ret;
}
/* Decode blocks */
*num_written = sys_be32_to_cpu(blocks[0]);
return 0;
}
static int card_write(struct sd_card *card, const uint8_t *wbuf, uint32_t start_block,
uint32_t num_blocks)
{
int ret;
uint32_t blocks;
struct sdhc_command cmd = {0};
struct sdhc_data data = {0};
/*
* See the note in card_read() above. We will not issue CMD23
* or CMD12, and expect the host to handle those details.
*/
cmd.opcode = (num_blocks == 1) ? SD_WRITE_SINGLE_BLOCK : SD_WRITE_MULTIPLE_BLOCK;
if (!(card->flags & SD_HIGH_CAPACITY_FLAG)) {
/* SDSC cards require block size in bytes, not blocks */
cmd.arg = start_block * card->block_size;
} else {
cmd.arg = start_block;
}
cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
cmd.retries = CONFIG_SD_DATA_RETRIES;
data.block_addr = start_block;
data.block_size = card->block_size;
data.blocks = num_blocks;
data.data = (uint8_t *)wbuf;
data.timeout_ms = CONFIG_SD_DATA_TIMEOUT;
LOG_DBG("WRITE: Sector = %u, Count = %u", start_block, num_blocks);
ret = sdhc_request(card->sdhc, &cmd, &data);
if (ret) {
LOG_DBG("Write failed: %d", ret);
ret = sdmmc_wait_ready(card);
if (ret) {
return ret;
}
/* Query card to see how many blocks were actually written */
ret = card_query_written(card, &blocks);
if (ret) {
return ret;
}
LOG_ERR("Only %d blocks of %d were written", blocks, num_blocks);
return -EIO;
}
/* Verify card is back in transfer state after write */
ret = sdmmc_wait_ready(card);
if (ret) {
LOG_ERR("Card did not return to ready state");
return -ETIMEDOUT;
}
return 0;
}
/* Writes data to SD card memory card */
int card_write_blocks(struct sd_card *card, const uint8_t *wbuf, uint32_t start_block,
uint32_t num_blocks)
{
int ret;
uint32_t wlen;
uint32_t sector;
const uint8_t *buf_offset;
if ((start_block + num_blocks) > card->block_count) {
return -EINVAL;
}
if (card->type == CARD_SDIO) {
LOG_WRN("SDIO does not support MMC commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&card->lock, K_NO_WAIT);
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
/*
* If the buffer we are provided with is aligned, we can use it
* directly. Otherwise, we need to use the card's internal buffer
* and memcpy the data back out
*/
if ((((uintptr_t)wbuf) & (CONFIG_SDHC_BUFFER_ALIGNMENT - 1)) != 0) {
/* lower bits of address are set, not aligned. Use internal buffer */
LOG_DBG("Unaligned buffer access to SD card may incur performance penalty");
if (sizeof(card->card_buffer) < card->block_size) {
LOG_ERR("Card buffer size needs to be increased for "
"unaligned writes to work");
k_mutex_unlock(&card->lock);
return -ENOBUFS;
}
wlen = sizeof(card->card_buffer) / card->block_size;
sector = 0;
buf_offset = wbuf;
while (sector < num_blocks) {
/* Copy data into card buffer */
memcpy(card->card_buffer, buf_offset, wlen * card->block_size);
/* Write card buffer to disk */
ret = card_write(card, card->card_buffer, sector + start_block, wlen);
if (ret) {
LOG_ERR("Write failed");
k_mutex_unlock(&card->lock);
return ret;
}
/* Increase sector count and buffer offset */
sector += wlen;
buf_offset += wlen * card->block_size;
}
} else {
/* We can use aligned buffers directly */
ret = card_write(card, wbuf, start_block, num_blocks);
if (ret) {
LOG_ERR("Write failed");
k_mutex_unlock(&card->lock);
return ret;
}
}
k_mutex_unlock(&card->lock);
return 0;
}
/* IO Control handler for SD MMC */
int card_ioctl(struct sd_card *card, uint8_t cmd, void *buf)
{
switch (cmd) {
case DISK_IOCTL_GET_SECTOR_COUNT:
(*(uint32_t *)buf) = card->block_count;
break;
case DISK_IOCTL_GET_SECTOR_SIZE:
case DISK_IOCTL_GET_ERASE_BLOCK_SZ:
(*(uint32_t *)buf) = card->block_size;
break;
case DISK_IOCTL_CTRL_SYNC:
/* Ensure card is not busy with data write.
* Note that SD stack does not support enabling caching, so
* cache flush is not required here
*/
return sdmmc_wait_ready(card);
default:
return -ENOTSUP;
}
return 0;
}

View file

@ -17,7 +17,7 @@ int sdmmc_switch_voltage(struct sd_card *card);
/*
* Reads card identification register, and decodes it
*/
int sdmmc_read_cid(struct sd_card *card);
int card_read_cid(struct sd_card *card);
/*
* Read card specific data register
@ -45,4 +45,18 @@ static inline int sdmmc_host_uhs(struct sdhc_host_props *props)
& (props->host_caps.vol_180_support);
}
int card_ioctl(struct sd_card *card, uint8_t cmd, void *buf);
int card_read_blocks(struct sd_card *card, uint8_t *rbuf,
uint32_t start_block, uint32_t num_blocks);
int card_write_blocks(struct sd_card *card, const uint8_t *wbuf,
uint32_t start_block, uint32_t num_blocks);
int card_app_command(struct sd_card *card, int relative_card_address);
int sdmmc_read_status(struct sd_card *card);
int sdmmc_wait_ready(struct sd_card *card);
#endif /* ZEPHYR_SUBSYS_SD_SD_OPS_H_ */

View file

@ -63,30 +63,23 @@ static inline void sdmmc_decode_scr(struct sd_scr *scr,
/* Helper to send SD app command */
static int sdmmc_app_command(struct sd_card *card, int relative_card_address)
{
struct sdhc_command cmd = {0};
return card_app_command(card, relative_card_address);
}
/* Reads OCR from SPI mode card using CMD58 */
static int sdmmc_spi_send_ocr(struct sd_card *card, uint32_t arg)
{
struct sdhc_command cmd;
int ret;
cmd.opcode = SD_APP_CMD;
cmd.arg = relative_card_address << 16U;
cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
cmd.opcode = SD_SPI_READ_OCR;
cmd.arg = arg;
cmd.response_type = SD_SPI_RSP_TYPE_R3;
ret = sdhc_request(card->sdhc, &cmd, NULL);
if (ret) {
/* We want to retry transmission */
return SD_RETRY;
}
ret = sd_check_response(&cmd);
if (ret) {
LOG_WRN("SD app command failed with R1 response of 0x%X",
cmd.response[0]);
return -EIO;
}
/* Check application command flag to determine if card is ready for APP CMD */
if ((!card->host_props.is_spi) && !(cmd.response[0U] & SD_R1_APP_CMD)) {
/* Command succeeded, but card not ready for app command. No APP CMD support */
return -ENOTSUP;
}
return 0;
card->ocr = cmd.response[1];
return ret;
}
/* Sends OCR to card using ACMD41 */
@ -557,11 +550,16 @@ int sdmmc_card_init(struct sd_card *card)
int ret;
uint32_t ocr_arg = 0U;
/* First send a probing OCR using ACMD41. Note that SPI cards also
* accept CMD58 at this point, but we skip this command as it is not
* required by the spec.
*/
ret = sdmmc_send_ocr(card, ocr_arg);
/* First send a probing OCR */
if (card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_SPI_MODE)) {
/* Probe SPI card with CMD58*/
ret = sdmmc_spi_send_ocr(card, ocr_arg);
} else if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) {
/* Probe Native card with ACMD41 */
ret = sdmmc_send_ocr(card, ocr_arg);
} else {
return -ENOTSUP;
}
if (ret) {
return ret;
}
@ -569,9 +567,11 @@ int sdmmc_card_init(struct sd_card *card)
card->type = CARD_SDMMC;
if (card->flags & SD_SDHC_FLAG) {
/* High capacity card. See if host supports 1.8V */
if (card->host_props.host_caps.vol_180_support) {
ocr_arg |= SD_OCR_SWITCH_18_REQ_FLAG;
if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) {
/* High capacity card. See if host supports 1.8V */
if (card->host_props.host_caps.vol_180_support) {
ocr_arg |= SD_OCR_SWITCH_18_REQ_FLAG;
}
}
/* Set host high capacity support flag */
ocr_arg |= SD_OCR_HOST_CAP_FLAG;
@ -594,6 +594,13 @@ int sdmmc_card_init(struct sd_card *card)
LOG_ERR("Failed to query card OCR");
return ret;
}
if (card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_SPI_MODE)) {
/* Send second CMD58 to get CCS bit */
ret = sdmmc_spi_send_ocr(card, ocr_arg);
if (ret) {
return ret;
}
}
/* Check SD high capacity and 1.8V support flags */
if (card->ocr & SD_OCR_CARD_CAP_FLAG) {
card->flags |= SD_HIGH_CAPACITY_FLAG;
@ -629,7 +636,7 @@ int sdmmc_card_init(struct sd_card *card)
}
}
/* Read the card's CID (card identification register) */
ret = sdmmc_read_cid(card);
ret = card_read_cid(card);
if (ret) {
return ret;
}
@ -713,375 +720,19 @@ int sdmmc_card_init(struct sd_card *card)
return ret;
}
/* Read card status. Return 0 if card is inactive */
static int sdmmc_read_status(struct sd_card *card)
int sdmmc_ioctl(struct sd_card *card, uint8_t cmd, void *buf)
{
struct sdhc_command cmd = {0};
int ret;
cmd.opcode = SD_SEND_STATUS;
if (!card->host_props.is_spi) {
cmd.arg = (card->relative_addr << 16U);
}
cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R2);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
ret = sdhc_request(card->sdhc, &cmd, NULL);
if (ret) {
return SD_RETRY;
}
if (card->host_props.is_spi) {
/* Check R2 response bits */
if ((cmd.response[0U] & SDHC_SPI_R2_CARD_LOCKED) ||
(cmd.response[0U] & SDHC_SPI_R2_UNLOCK_FAIL)) {
return -EACCES;
} else if ((cmd.response[0U] & SDHC_SPI_R2_WP_VIOLATION) ||
(cmd.response[0U] & SDHC_SPI_R2_ERASE_PARAM) ||
(cmd.response[0U] & SDHC_SPI_R2_OUT_OF_RANGE)) {
return -EINVAL;
} else if ((cmd.response[0U] & SDHC_SPI_R2_ERR) ||
(cmd.response[0U] & SDHC_SPI_R2_CC_ERR) ||
(cmd.response[0U] & SDHC_SPI_R2_ECC_FAIL)) {
return -EIO;
}
/* Otherwise, no error in R2 response */
return 0;
}
/* Otherwise, check native card response */
if ((cmd.response[0U] & SD_R1_RDY_DATA) &&
(SD_R1_CURRENT_STATE(cmd.response[0U]) == SDMMC_R1_TRANSFER)) {
return 0;
}
/* Valid response, the card is busy */
return -EBUSY;
return card_ioctl(card, cmd, buf);
}
/* Waits for SD card to be ready for data. Returns 0 if card is ready */
static int sdmmc_wait_ready(struct sd_card *card)
{
int ret, timeout = CONFIG_SD_DATA_TIMEOUT * 1000;
bool busy = true;
do {
busy = sdhc_card_busy(card->sdhc);
if (!busy) {
/* Check card status */
ret = sd_retry(sdmmc_read_status, card, CONFIG_SD_RETRY_COUNT);
busy = (ret != 0);
} else {
/* Delay 125us before polling again */
k_busy_wait(125);
timeout -= 125;
}
} while (busy && (timeout > 0));
return busy;
}
static int sdmmc_read(struct sd_card *card, uint8_t *rbuf,
uint32_t start_block, uint32_t num_blocks)
{
int ret;
struct sdhc_command cmd = {0};
struct sdhc_data data = {0};
/*
* Note: The SD specification allows for CMD23 to be sent before a
* transfer in order to set the block length (often preferable).
* The specification also requires that CMD12 be sent to stop a transfer.
* However, the host specification defines support for "Auto CMD23" and
* "Auto CMD12", where the host sends CMD23 and CMD12 automatically to
* remove the overhead of interrupts in software from sending these
* commands. Therefore, we will not handle CMD12 or CMD23 at this layer.
* The host SDHC driver is expected to recognize CMD17, CMD18, CMD24,
* and CMD25 as special read/write commands and handle CMD23 and
* CMD12 appropriately.
*/
cmd.opcode = (num_blocks == 1U) ? SD_READ_SINGLE_BLOCK : SD_READ_MULTIPLE_BLOCK;
if (!(card->flags & SD_HIGH_CAPACITY_FLAG)) {
/* SDSC cards require block size in bytes, not blocks */
cmd.arg = start_block * card->block_size;
} else {
cmd.arg = start_block;
}
cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
cmd.retries = CONFIG_SD_DATA_RETRIES;
data.block_addr = start_block;
data.block_size = card->block_size;
data.blocks = num_blocks;
data.data = rbuf;
data.timeout_ms = CONFIG_SD_DATA_TIMEOUT;
LOG_DBG("READ: Sector = %u, Count = %u", start_block, num_blocks);
ret = sdhc_request(card->sdhc, &cmd, &data);
if (ret) {
LOG_ERR("Failed to read from SDMMC %d", ret);
return ret;
}
/* Verify card is back in transfer state after read */
ret = sdmmc_wait_ready(card);
if (ret) {
LOG_ERR("Card did not return to ready state");
k_mutex_unlock(&card->lock);
return -ETIMEDOUT;
}
return 0;
}
/* Reads data from SD card memory card */
int sdmmc_read_blocks(struct sd_card *card, uint8_t *rbuf,
uint32_t start_block, uint32_t num_blocks)
{
int ret;
uint32_t rlen;
uint32_t sector;
uint8_t *buf_offset;
if ((start_block + num_blocks) > card->block_count) {
return -EINVAL;
}
if (card->type == CARD_SDIO) {
LOG_WRN("SDIO does not support MMC commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&card->lock, K_NO_WAIT);
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
/*
* If the buffer we are provided with is aligned, we can use it
* directly. Otherwise, we need to use the card's internal buffer
* and memcpy the data back out
*/
if ((((uintptr_t)rbuf) & (CONFIG_SDHC_BUFFER_ALIGNMENT - 1)) != 0) {
/* lower bits of address are set, not aligned. Use internal buffer */
LOG_DBG("Unaligned buffer access to SD card may incur performance penalty");
if (sizeof(card->card_buffer) < card->block_size) {
LOG_ERR("Card buffer size needs to be increased for "
"unaligned writes to work");
k_mutex_unlock(&card->lock);
return -ENOBUFS;
}
rlen = sizeof(card->card_buffer) / card->block_size;
sector = 0;
buf_offset = rbuf;
while (sector < num_blocks) {
/* Read from disk to card buffer */
ret = sdmmc_read(card, card->card_buffer,
sector + start_block, rlen);
if (ret) {
LOG_ERR("Write failed");
k_mutex_unlock(&card->lock);
return ret;
}
/* Copy data from card buffer */
memcpy(buf_offset, card->card_buffer, rlen * card->block_size);
/* Increase sector count and buffer offset */
sector += rlen;
buf_offset += rlen * card->block_size;
}
} else {
/* Aligned buffers can be used directly */
ret = sdmmc_read(card, rbuf, start_block, num_blocks);
if (ret) {
LOG_ERR("Card read failed");
k_mutex_unlock(&card->lock);
return ret;
}
}
k_mutex_unlock(&card->lock);
return 0;
return card_read_blocks(card, rbuf, start_block, num_blocks);
}
/*
* Sends ACMD22 (number of written blocks) to see how many blocks were written
* to a card
*/
static int sdmmc_query_written(struct sd_card *card, uint32_t *num_written)
{
int ret;
struct sdhc_command cmd = {0};
struct sdhc_data data = {0};
uint32_t *blocks = (uint32_t *)card->card_buffer;
ret = sdmmc_app_command(card, card->relative_addr);
if (ret) {
LOG_DBG("App CMD for ACMD22 failed");
return ret;
}
cmd.opcode = SD_APP_SEND_NUM_WRITTEN_BLK;
cmd.arg = 0;
cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
data.block_size = 4U;
data.blocks = 1U;
data.data = blocks;
data.timeout_ms = CONFIG_SD_DATA_TIMEOUT;
ret = sdhc_request(card->sdhc, &cmd, &data);
if (ret) {
LOG_DBG("ACMD22 failed: %d", ret);
return ret;
}
ret = sd_check_response(&cmd);
if (ret) {
LOG_DBG("ACMD22 reports error");
return ret;
}
/* Decode blocks */
*num_written = sys_be32_to_cpu(blocks[0]);
return 0;
}
static int sdmmc_write(struct sd_card *card, const uint8_t *wbuf,
uint32_t start_block, uint32_t num_blocks)
{
int ret;
uint32_t blocks;
struct sdhc_command cmd = {0};
struct sdhc_data data = {0};
/*
* See the note in sdmmc_read() above. We will not issue CMD23
* or CMD12, and expect the host to handle those details.
*/
cmd.opcode = (num_blocks == 1) ? SD_WRITE_SINGLE_BLOCK : SD_WRITE_MULTIPLE_BLOCK;
if (!(card->flags & SD_HIGH_CAPACITY_FLAG)) {
/* SDSC cards require block size in bytes, not blocks */
cmd.arg = start_block * card->block_size;
} else {
cmd.arg = start_block;
}
cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1);
cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT;
cmd.retries = CONFIG_SD_DATA_RETRIES;
data.block_addr = start_block;
data.block_size = card->block_size;
data.blocks = num_blocks;
data.data = (uint8_t *)wbuf;
data.timeout_ms = CONFIG_SD_DATA_TIMEOUT;
LOG_DBG("WRITE: Sector = %u, Count = %u", start_block, num_blocks);
ret = sdhc_request(card->sdhc, &cmd, &data);
if (ret) {
LOG_DBG("Write failed: %d", ret);
ret = sdmmc_wait_ready(card);
if (ret) {
return ret;
}
/* Query card to see how many blocks were actually written */
ret = sdmmc_query_written(card, &blocks);
if (ret) {
return ret;
}
LOG_ERR("Only %d blocks of %d were written", blocks, num_blocks);
return -EIO;
}
/* Verify card is back in transfer state after write */
ret = sdmmc_wait_ready(card);
if (ret) {
LOG_ERR("Card did not return to ready state");
return -ETIMEDOUT;
}
return 0;
}
/* Writes data to SD card memory card */
int sdmmc_write_blocks(struct sd_card *card, const uint8_t *wbuf,
uint32_t start_block, uint32_t num_blocks)
{
int ret;
uint32_t wlen;
uint32_t sector;
const uint8_t *buf_offset;
if ((start_block + num_blocks) > card->block_count) {
return -EINVAL;
}
if (card->type == CARD_SDIO) {
LOG_WRN("SDIO does not support MMC commands");
return -ENOTSUP;
}
ret = k_mutex_lock(&card->lock, K_NO_WAIT);
if (ret) {
LOG_WRN("Could not get SD card mutex");
return -EBUSY;
}
/*
* If the buffer we are provided with is aligned, we can use it
* directly. Otherwise, we need to use the card's internal buffer
* and memcpy the data back out
*/
if ((((uintptr_t)wbuf) & (CONFIG_SDHC_BUFFER_ALIGNMENT - 1)) != 0) {
/* lower bits of address are set, not aligned. Use internal buffer */
LOG_DBG("Unaligned buffer access to SD card may incur performance penalty");
if (sizeof(card->card_buffer) < card->block_size) {
LOG_ERR("Card buffer size needs to be increased for "
"unaligned writes to work");
k_mutex_unlock(&card->lock);
return -ENOBUFS;
}
wlen = sizeof(card->card_buffer) / card->block_size;
sector = 0;
buf_offset = wbuf;
while (sector < num_blocks) {
/* Copy data into card buffer */
memcpy(card->card_buffer, buf_offset, wlen * card->block_size);
/* Write card buffer to disk */
ret = sdmmc_write(card, card->card_buffer,
sector + start_block, wlen);
if (ret) {
LOG_ERR("Write failed");
k_mutex_unlock(&card->lock);
return ret;
}
/* Increase sector count and buffer offset */
sector += wlen;
buf_offset += wlen * card->block_size;
}
} else {
/* We can use aligned buffers directly */
ret = sdmmc_write(card, wbuf, start_block, num_blocks);
if (ret) {
LOG_ERR("Write failed");
k_mutex_unlock(&card->lock);
return ret;
}
}
k_mutex_unlock(&card->lock);
return 0;
}
/* IO Control handler for SD MMC */
int sdmmc_ioctl(struct sd_card *card, uint8_t cmd, void *buf)
{
switch (cmd) {
case DISK_IOCTL_GET_SECTOR_COUNT:
(*(uint32_t *)buf) = card->block_count;
break;
case DISK_IOCTL_GET_SECTOR_SIZE:
case DISK_IOCTL_GET_ERASE_BLOCK_SZ:
(*(uint32_t *)buf) = card->block_size;
break;
case DISK_IOCTL_CTRL_SYNC:
/* Ensure card is not busy with data write.
* Note that SD stack does not support enabling caching, so
* cache flush is not required here
*/
return sdmmc_wait_ready(card);
default:
return -ENOTSUP;
}
return 0;
return card_write_blocks(card, wbuf, start_block, num_blocks);
}