device: add post-process of elf file to manage device handles

Following the idiom used for system calls, add script support to read
the initial application binary to identify which devices are defined,
and to use their offset in the device array as their unique handle
rather than the externally-defined ordinal from devicetree.  The
device dependency arrays are updated to use these handles.

Signed-off-by: Peter Bigot <peter.bigot@nordicsemi.no>
This commit is contained in:
Peter Bigot 2020-06-30 10:05:35 -05:00 committed by Anas Nashif
parent 669bc6b86f
commit d554d34137
7 changed files with 390 additions and 5 deletions

View file

@ -766,6 +766,19 @@ if(CONFIG_GEN_ISR_TABLES)
set_property(GLOBAL APPEND PROPERTY GENERATED_KERNEL_SOURCE_FILES isr_tables.c)
endif()
# dev_handles.c is generated from ${ZEPHYR_PREBUILT_EXECUTABLE} by
# gen_handles.py
add_custom_command(
OUTPUT dev_handles.c
COMMAND
${PYTHON_EXECUTABLE}
${ZEPHYR_BASE}/scripts/gen_handles.py
--output-source dev_handles.c
--kernel $<TARGET_FILE:${ZEPHYR_PREBUILT_EXECUTABLE}>
DEPENDS ${ZEPHYR_PREBUILT_EXECUTABLE}
)
set_property(GLOBAL APPEND PROPERTY GENERATED_KERNEL_SOURCE_FILES dev_handles.c)
if(CONFIG_CODE_DATA_RELOCATION)
# @Intent: Linker script to relocate .text, data and .bss sections
toolchain_ld_relocation()

View file

@ -503,6 +503,7 @@
/scripts/pylib/twister/expr_parser.py @nashif
/scripts/schemas/twister/ @nashif
/scripts/gen_app_partitions.py @dcpleung @nashif
/scripts/gen_handles.py @pabigot
/scripts/get_maintainer.py @nashif
/scripts/dts/ @mbolivar-nordic @galak
/scripts/release/ @nashif

View file

@ -151,9 +151,16 @@ is skipped.
Final binary
============
In some configurations, the binary from the previous stage is
incomplete, with empty and/or placeholder sections that must be filled
in by, essentially, reflection. When :ref:`usermode_api` is enabled:
The binary from the previous stage is incomplete, with empty and/or
placeholder sections that must be filled in by, essentially, reflection.
Device dependencies
The *gen_handles.py* script scans the first-pass binary to determine
relationships between devices that were recorded from devicetree data,
and replaces the encoded relationships with values that are optimized to
locate the devices actually present in the application.
When :ref:`usermode_api` is enabled:
Kernel object hashing
The *gen_kobject_list.py* scans the *ELF DWARF*
@ -202,6 +209,15 @@ The following is a detailed description of the scripts used during the build pro
:start-after: """
:end-before: """
.. _gen_handles.py:
:zephyr_file:`scripts/gen_handles.py`
==========================================
.. include:: ../../../scripts/gen_handles.py
:start-after: """
:end-before: """
.. _gen_kobject_list.py:
:zephyr_file:`scripts/gen_kobject_list.py`

View file

@ -911,12 +911,38 @@ static inline int device_pm_put_sync(const struct device *dev) { return -ENOTSUP
#define Z_DEVICE_DEFINE_PRE(node_id, dev_name, ...) \
Z_DEVICE_DEFINE_HANDLES(node_id, dev_name, __VA_ARGS__)
/* Initial build provides a record that associates the device object
* with its devicetree ordinal, and provides the dependency ordinals.
* These are provided as weak definitions (to prevent the reference
* from being captured when the original object file is compiled), and
* in a distinct pass1 section (which will be replaced by
* postprocessing).
*
* It is also (experimentally) necessary to provide explicit alignment
* on each object. Otherwise x86-64 builds will introduce padding
* between objects in the same input section in individual object
* files, which will be retained in subsequent links both wasting
* space and resulting in aggregate size changes relative to pass2
* when all objects will be in the same input section.
*
* The build assert will fail if device_handle_t changes size, which
* means the alignment directives in the linker scripts and in
* `gen_handles.py` must be updated.
*/
BUILD_ASSERT(sizeof(device_handle_t) == 2, "fix the linker scripts");
#define Z_DEVICE_DEFINE_HANDLES(node_id, dev_name, ...) \
static const device_handle_t Z_DEVICE_HANDLE_NAME(node_id,dev_name)[] = { \
extern const device_handle_t \
Z_DEVICE_HANDLE_NAME(node_id, dev_name)[]; \
const device_handle_t \
__aligned(sizeof(device_handle_t)) \
__attribute__((__weak__, \
__section__(".__device_handles_pass1"))) \
Z_DEVICE_HANDLE_NAME(node_id, dev_name)[] = { \
COND_CODE_1(DT_NODE_EXISTS(node_id), ( \
DT_DEP_ORD(node_id), \
DT_REQUIRES_DEP_ORDS(node_id) \
),( \
), ( \
DEVICE_HANDLE_NULL, \
)) \
DEVICE_HANDLE_SEP, \

View file

@ -180,3 +180,14 @@
} GROUP_LINK_IN(ROMABLE_REGION)
Z_ITERABLE_SECTION_ROM(tracing_backend, 4)
SECTION_DATA_PROLOGUE(device_handles,,)
{
__device_handles_start = .;
#ifdef LINKER_PASS2
KEEP(*(SORT(.__device_handles_pass2*)));
#else /* LINKER_PASS2 */
KEEP(*(SORT(.__device_handles_pass1*)));
#endif /* LINKER_PASS2 */
__device_handles_end = .;
} GROUP_LINK_IN(ROMABLE_REGION)

View file

@ -86,5 +86,9 @@ GEN_ABSOLUTE_SYM(K_THREAD_SIZEOF, sizeof(struct k_thread));
/* size of the device structure. Used by linker scripts */
GEN_ABSOLUTE_SYM(_DEVICE_STRUCT_SIZEOF, sizeof(const struct device));
/* member offsets in the device structure. Used in image post-processing */
GEN_ABSOLUTE_SYM(_DEVICE_STRUCT_HANDLES_OFFSET,
offsetof(struct device, handles));
/* LCOV_EXCL_STOP */
#endif /* ZEPHYR_KERNEL_INCLUDE_KERNEL_OFFSETS_H_ */

314
scripts/gen_handles.py Executable file
View file

@ -0,0 +1,314 @@
#!/usr/bin/env python3
#
# Copyright (c) 2017 Intel Corporation
# Copyright (c) 2020 Nordic Semiconductor NA
#
# SPDX-License-Identifier: Apache-2.0
"""Translate generic handles into ones optimized for the application.
Immutable device data includes information about dependencies,
e.g. that a particular sensor is controlled through a specific I2C bus
and that it signals event on a pin on a specific GPIO controller.
This information is encoded in the first-pass binary using identifiers
derived from the devicetree. This script extracts those identifiers
and replaces them with ones optimized for use with the devices
actually present.
For example the sensor might have a first-pass handle defined by its
devicetree ordinal 52, with the I2C driver having ordinal 24 and the
GPIO controller ordinal 14. The runtime ordinal is the index of the
corresponding device in the static devicetree array, which might be 6,
5, and 3, respectively.
The output is a C source file that provides alternative definitions
for the array contents referenced from the immutable device objects.
In the final link these definitions supersede the ones in the
driver-specific object file.
"""
import sys
import argparse
import os
import struct
import pickle
from distutils.version import LooseVersion
import elftools
from elftools.elf.elffile import ELFFile
from elftools.elf.sections import SymbolTableSection
import elftools.elf.enums
if LooseVersion(elftools.__version__) < LooseVersion('0.24'):
sys.exit("pyelftools is out of date, need version 0.24 or later")
ZEPHYR_BASE = os.getenv("ZEPHYR_BASE")
sys.path.insert(0, os.path.join(ZEPHYR_BASE, "scripts/dts"))
scr = os.path.basename(sys.argv[0])
def debug(text):
if not args.verbose:
return
sys.stdout.write(scr + ": " + text + "\n")
def parse_args():
global args
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument("-k", "--kernel", required=True,
help="Input zephyr ELF binary")
parser.add_argument("-o", "--output-source", required=True,
help="Output source file")
parser.add_argument("-v", "--verbose", action="store_true",
help="Print extra debugging information")
args = parser.parse_args()
if "VERBOSE" in os.environ:
args.verbose = 1
def symbol_data(elf, sym):
addr = sym.entry.st_value
len = sym.entry.st_size
for section in elf.iter_sections():
start = section['sh_addr']
end = start + section['sh_size']
if (start <= addr) and (addr + len) <= end:
offset = addr - section['sh_addr']
return bytes(section.data()[offset:offset + len])
def symbol_handle_data(elf, sym):
data = symbol_data(elf, sym)
if data:
format = "<" if elf.little_endian else ">"
format += "%uh" % (len(data) / 2)
return struct.unpack(format, data)
# These match the corresponding constants in <device.h>
DEVICE_HANDLE_SEP = -32768
DEVICE_HANDLE_ENDS = 32767
def handle_name(hdl):
if hdl == DEVICE_HANDLE_SEP:
return "DEVICE_HANDLE_SEP"
if hdl == DEVICE_HANDLE_ENDS:
return "DEVICE_HANDLE_ENDS"
if hdl == 0:
return "DEVICE_HANDLE_NULL"
return str(int(hdl))
class Device:
"""
Represents information about a device object and its references to other objects.
"""
def __init__(self, elf, ld_constants, sym, addr):
self.elf = elf
self.ld_constants = ld_constants
self.sym = sym
self.addr = addr
# Point to the handles instance associated with the device;
# assigned by correlating the device struct handles pointer
# value with the addr of a Handles instance.
self.__handles = None
@property
def obj_handles(self):
"""
Returns the value from the device struct handles field, pointing to the
array of handles for devices this device depends on.
"""
if self.__handles is None:
data = symbol_data(self.elf, self.sym)
format = "<" if self.elf.little_endian else ">"
if self.elf.elfclass == 32:
format += "I"
size = 4
else:
format += "Q"
size = 8
offset = self.ld_constants["DEVICE_STRUCT_HANDLES_OFFSET"]
self.__handles = struct.unpack(format, data[offset:offset + size])[0]
return self.__handles
class Handles:
def __init__(self, sym, addr, handles, node):
self.sym = sym
self.addr = addr
self.handles = handles
self.node = node
self.dep_ord = None
self.dev_deps = None
self.ext_deps = None
def main():
parse_args()
assert args.kernel, "--kernel ELF required to extract data"
elf = ELFFile(open(args.kernel, "rb"))
edtser = os.path.join(os.path.split(args.kernel)[0], "edt.pickle")
with open(edtser, 'rb') as f:
edt = pickle.load(f)
devices = []
handles = []
# Leading _ are stripped from the stored constant key
want_constants = set(["__device_start",
"_DEVICE_STRUCT_SIZEOF",
"_DEVICE_STRUCT_HANDLES_OFFSET"])
ld_constants = dict()
for section in elf.iter_sections():
if isinstance(section, SymbolTableSection):
for sym in section.iter_symbols():
if sym.name in want_constants:
ld_constants[sym.name.lstrip("_")] = sym.entry.st_value
continue
if sym.entry.st_info.type != 'STT_OBJECT':
continue
if sym.name.startswith("__device"):
addr = sym.entry.st_value
if sym.name.startswith("__device_"):
devices.append(Device(elf, ld_constants, sym, addr))
debug("device %s" % (sym.name,))
elif sym.name.startswith("__devicehdl_"):
hdls = symbol_handle_data(elf, sym)
# The first element of the hdls array is the dependency
# ordinal of the device, which identifies the devicetree
# node.
node = edt.dep_ord2node[hdls[0]] if (hdls and hdls[0] != 0) else None
handles.append(Handles(sym, addr, hdls, node))
debug("handles %s %d %s" % (sym.name, hdls[0] if hdls else -1, node))
assert len(want_constants) == len(ld_constants), "linker map data incomplete"
devices = sorted(devices, key = lambda k: k.sym.entry.st_value)
device_start_addr = ld_constants["device_start"]
device_size = 0
assert len(devices) == len(handles), 'mismatch devices and handles'
used_nodes = set()
for handle in handles:
for device in devices:
if handle.addr == device.obj_handles:
handle.device = device
break
device = handle.device
assert device, 'no device for %s' % (handle.sym.name,)
device.handle = handle
if device_size == 0:
device_size = device.sym.entry.st_size
# The device handle is one plus the ordinal of this device in
# the device table.
device.dev_handle = 1 + int((device.sym.entry.st_value - device_start_addr) / device_size)
debug("%s dev ordinal %d" % (device.sym.name, device.dev_handle))
n = handle.node
if n is not None:
debug("%s dev ordinal %d\n\t%s" % (n.path, device.dev_handle, ' ; '.join(str(_) for _ in handle.handles)))
used_nodes.add(n)
n.__device = device
else:
debug("orphan %d" % (device.dev_handle,))
hv = handle.handles
hvi = 1
handle.dev_deps = []
handle.ext_deps = []
deps = handle.dev_deps
while True:
h = hv[hvi]
if h == DEVICE_HANDLE_ENDS:
break
if h == DEVICE_HANDLE_SEP:
deps = handle.ext_deps
else:
deps.append(h)
n = edt
hvi += 1
# Compute the dependency graph induced from the full graph restricted to the
# the nodes that exist in the application. Note that the edges in the
# induced graph correspond to paths in the full graph.
root = edt.dep_ord2node[0]
assert root not in used_nodes
for sn in used_nodes:
# Where we're storing the final set of nodes: these are all used
sn.__depends = set()
deps = set(sn.depends_on)
debug("\nNode: %s\nOrig deps:\n\t%s" % (sn.path, "\n\t".join([dn.path for dn in deps])))
while len(deps) > 0:
dn = deps.pop()
if dn in used_nodes:
# this is used
sn.__depends.add(dn)
elif dn != root:
# forward the dependency up one level
for ddn in dn.depends_on:
deps.add(ddn)
debug("final deps:\n\t%s\n" % ("\n\t".join([ _dn.path for _dn in sn.__depends])))
with open(args.output_source, "w") as fp:
fp.write('#include <device.h>\n')
fp.write('#include <toolchain.h>\n')
for dev in devices:
hs = dev.handle
assert hs, "no hs for %s" % (dev.sym.name,)
dep_paths = []
ext_paths = []
hdls = []
sn = hs.node
if sn:
hdls.extend(dn.__device.dev_handle for dn in sn.__depends)
for dn in sn.depends_on:
if dn in sn.__depends:
dep_paths.append(dn.path)
else:
dep_paths.append('(%s)' % dn.path)
if len(hs.ext_deps) > 0:
# TODO: map these to something smaller?
ext_paths.extend(map(str, hs.ext_deps))
hdls.append(DEVICE_HANDLE_SEP)
hdls.extend(hs.ext_deps)
# When CONFIG_USERSPACE is enabled the pre-built elf is
# also used to get hashes that identify kernel objects by
# address. We can't allow the size of any object in the
# final elf to change.
while len(hdls) < len(hs.handles):
hdls.append(DEVICE_HANDLE_ENDS)
assert len(hdls) == len(hs.handles), "%s handle overflow" % (dev.sym.name,)
lines = [
'',
'/* %d : %s:' % (dev.dev_handle, (sn and sn.path) or "sysinit"),
]
if len(dep_paths) > 0:
lines.append(' * - %s' % ('\n * - '.join(dep_paths)))
if len(ext_paths) > 0:
lines.append(' * + %s' % ('\n * + '.join(ext_paths)))
lines.extend([
' */',
'const device_handle_t __aligned(2) __attribute__((__section__(".__device_handles_pass2")))',
'%s[] = { %s };' % (hs.sym.name, ', '.join([handle_name(_h) for _h in hdls])),
'',
])
fp.write('\n'.join(lines))
if __name__ == "__main__":
main()