soc: pm: Microchip MEC172x SoC based power management

Add support for SoC power management for Microchip MEC172x.

Signed-off-by: Jay Vasanth <jay.vasanth@microchip.com>
This commit is contained in:
Jay Vasanth 2022-05-03 15:11:25 -04:00 committed by Carles Cufí
parent a8bffd9302
commit de5296203a
9 changed files with 755 additions and 0 deletions

View file

@ -46,6 +46,20 @@
label = "LED 5";
};
};
power-states {
idle: idle {
compatible = "zephyr,power-state";
power-state-name = "suspend-to-idle";
min-residency-us = <1000000>;
};
suspend_to_ram: suspend_to_ram {
compatible = "zephyr,power-state";
power-state-name = "suspend-to-ram";
min-residency-us = <2000000>;
};
};
};
&cpu0 {

View file

@ -9,6 +9,13 @@ zephyr_sources(
soc.c
)
if(CONFIG_PM)
zephyr_library_sources(power.c)
if(NOT CONFIG_PM_DEVICE)
zephyr_library_sources(device_power.c)
endif()
endif()
if(CONFIG_SOC_HAS_TIMING_FUNCTIONS AND NOT CONFIG_BOARD_HAS_TIMING_FUNCTIONS)
if(CONFIG_TIMING_FUNCTIONS)
# Use MEC172x timing calculations only if DWT is not present

View file

@ -43,4 +43,10 @@ config PS2_XEC
default y
depends on PS2
config PM
default y if SYS_CLOCK_EXISTS
config PM_DEVICE
default n
endif # SOC_SERIES_MEC172X

View file

@ -24,3 +24,8 @@ config SOC_MEC172X_PROC_CLK_DIV
and main 96 MHz clock (MCK):
HCLK = MCK / PROC_CLK_DIV
Allowed divider values: 1, 3, 4, 16, and 48.
config SOC_MEC172X_TEST_CLK_OUT
bool "Test clock out pin"
help
Enables a test clock out pin

View file

@ -0,0 +1,384 @@
/*
* Copyright (c) 2019 Microchip Technology Inc.
* Copyright (c) 2016 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr.h>
#include <sys/sys_io.h>
#include <sys/__assert.h>
#include <pm/pm.h>
#include <soc.h>
#include "device_power.h"
#define ADC_0_XEC_REG_BASE \
((struct adc_regs *)(DT_REG_ADDR(DT_NODELABEL(adc0))))
#define ECIA_XEC_REG_BASE \
((struct ecia_named_regs *)(DT_REG_ADDR(DT_NODELABEL(ecia))))
#define ECS_XEC_REG_BASE \
((struct ecs_regs *)(DT_REG_ADDR(DT_NODELABEL(ecs))))
#define PECI_XEC_REG_BASE \
((struct peci_regs *)(DT_REG_ADDR(DT_NODELABEL(pcr))))
#define PCR_XEC_REG_BASE \
((struct pcr_regs *)(DT_REG_ADDR(DT_NODELABEL(pcr))))
#define TFDP_0_XEC_REG_BASE \
((struct tfdp_regs *)(DT_REG_ADDR(DT_NODELABEL(tfdp0))))
#define UART_0_XEC_REG_BASE \
((struct uart_regs *)(DT_REG_ADDR(DT_NODELABEL(uart0))))
#define UART_1_XEC_REG_BASE \
((struct uart_regs *)(DT_REG_ADDR(DT_NODELABEL(uart1))))
#define VBATR_XEC_REG_BASE \
((struct vbatr_regs *)(DT_REG_ADDR_BY_NAME(DT_NODELABEL(pcr), vbatr)))
#define VBATM_XEC_BASE_ADDR \
((uintptr_t)(DT_REG_ADDR(DT_NODELABEL(bbram))))
#define BTMR16_0_ADDR DT_REG_ADDR(DT_NODELABEL(timer0))
#define BTMR16_1_ADDR DT_REG_ADDR(DT_NODELABEL(timer1))
#define BTMR16_2_ADDR DT_REG_ADDR(DT_NODELABEL(timer2))
#define BTMR16_3_ADDR DT_REG_ADDR(DT_NODELABEL(timer3))
#define BTMR32_0_ADDR DT_REG_ADDR(DT_NODELABEL(timer4))
#define BTMR32_1_ADDR DT_REG_ADDR(DT_NODELABEL(timer5))
#define VBATM_XEC_ADDR DT_REG_ADDR(DT_NODELABEL(vbr))
#ifdef DEBUG_DEEP_SLEEP_CLK_REQ
void soc_debug_sleep_clk_req(void)
{
struct ecs_regs *ecs = ECS_XEC_REG_BASE;
struct pcr_regs *pcr = PCR_XEC_REG_BASE;
uintptr_t vbm_addr = VBATM_XEC_BASE_ADDR;
/* Save status to debug LPM been blocked */
for (int i = 0; i < 5; i++) {
sys_write32(pcr->CLK_REQ[i], vbm_addr);
vbm_addr += 4;
}
sys_write32(pcr->SYS_SLP_CTRL, vbm_addr);
vbm_addr += 4;
sys_write32(ecs->SLP_STS_MIRROR, vbm_addr);
}
#endif
/*
* Allow peripherals connected to external masters to wake the PLL but not
* the EC. Once the peripheral has serviced the external master the PLL
* will be turned back off. For example, if the eSPI master requests eSPI
* configuration information or state of virtual wires the EC doesn't need
* to be involved. The hardware can power on the PLL long enough to service
* the request and then turn the PLL back off. The SMBus and I2C peripherals
* in slave mode can also make use of this feature.
*/
void soc_deep_sleep_non_wake_en(void)
{
#ifdef CONFIG_ESPI
struct ecia_named_regs *regs = ECIA_XEC_REG_BASE;
regs->GIRQ22.SRC = UINT32_MAX;
regs->GIRQ22.EN_SET = MCHP_ESPI_WK_CLK_GIRQ_BIT;
#endif
}
void soc_deep_sleep_non_wake_dis(void)
{
#ifdef CONFIG_ESPI
struct ecia_named_regs *regs = ECIA_XEC_REG_BASE;
regs->GIRQ22.EN_CLR = UINT32_MAX;
regs->GIRQ22.SRC = UINT32_MAX;
#endif
}
/* When MEC172x drivers are power-aware this should be move there */
void soc_deep_sleep_wake_en(void)
{
#if defined(CONFIG_KSCAN) || DT_NODE_HAS_STATUS(DT_NODELABEL(ps2_0), okay)
struct ecia_named_regs *regs = ECIA_XEC_REG_BASE;
#if defined(CONFIG_KSCAN)
/* Enable PLL wake via KSCAN */
regs->GIRQ21.SRC = MCHP_KEYSCAN_GIRQ_BIT;
regs->GIRQ21.EN_SET = MCHP_KEYSCAN_GIRQ_BIT;
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(ps2_0), okay)
/* Enable PS2_0B_WK */
regs->GIRQ21.SRC = MCHP_PS2_0_PORT0B_WK_GIRQ_BIT;
regs->GIRQ21.EN_SET = MCHP_PS2_0_PORT0B_WK_GIRQ_BIT;
#endif
#endif
}
void soc_deep_sleep_wake_dis(void)
{
#if DT_NODE_HAS_STATUS(DT_NODELABEL(ps2_0), okay)
struct ecia_named_regs *regs = ECIA_XEC_REG_BASE;
/* Enable PS2_0B_WK */
regs->GIRQ21.EN_CLR = MCHP_PS2_0_PORT0B_WK_GIRQ_BIT;
regs->GIRQ21.SRC = MCHP_PS2_0_PORT0B_WK_GIRQ_BIT;
#endif
}
/* Variables used to save various HW state */
#ifdef DEEP_SLEEP_PERIPH_SAVE_RESTORE
const struct ds_timer_info ds_timer_tbl[NUM_DS_TIMER_ENTRIES] = {
{
(uintptr_t)(BTMR16_0_ADDR + MCHP_BTMR_CTRL_OFS),
MCHP_BTMR_CTRL_HALT, 0
},
{
(uintptr_t)(BTMR16_1_ADDR + MCHP_BTMR_CTRL_OFS),
MCHP_BTMR_CTRL_HALT, 0
},
{
(uintptr_t)(BTMR16_2_ADDR + MCHP_BTMR_CTRL_OFS),
MCHP_BTMR_CTRL_HALT, 0
},
{
(uintptr_t)(BTMR16_3_ADDR + MCHP_BTMR_CTRL_OFS),
MCHP_BTMR_CTRL_HALT, 0
},
{
(uintptr_t)(BTMR32_0_ADDR + MCHP_BTMR_CTRL_OFS),
MCHP_BTMR_CTRL_HALT, 0
},
{
(uintptr_t)(BTMR32_1_ADDR + MCHP_BTMR_CTRL_OFS),
MCHP_BTMR_CTRL_HALT, 0
},
};
static struct ds_dev_info ds_ctx;
static void deep_sleep_save_ecs(void)
{
struct ecs_regs *regs = ECS_XEC_REG_BASE;
ds_ctx.ecs[0] = regs->ETM_CTRL;
ds_ctx.ecs[1] = regs->DEBUG_CTRL;
#ifdef DEEP_SLEEP_JTAG
regs->ETM_CTRL = 0;
regs->DEBUG_CTRL = 0x00;
#endif
}
#ifdef DEEP_SLEEP_UART_SAVE_RESTORE
static void deep_sleep_save_uarts(void)
{
struct uart_regs *regs = UART_0_XEC_REG_BASE;
ds_ctx.uart_info[0] = regs->ACTV;
if (ds_ctx.uart_info[0]) {
while ((regs->LSR & MCHP_UART_LSR_TEMT) == 0) {
}
}
regs->ACTV = 0;
regs = UART_1_XEC_REG_BASE;
ds_ctx.uart_info[1] = regs->ACTV;
if (ds_ctx.uart_info[1]) {
while ((regs->LSR & MCHP_UART_LSR_TEMT) == 0) {
}
}
regs->ACTV = 0;
}
#endif
static void deep_sleep_save_timers(void)
{
const struct ds_timer_info *p;
uint32_t i;
p = &ds_timer_tbl[0];
for (i = 0; i < NUM_DS_TIMER_ENTRIES; i++) {
ds_ctx.timers[i] = sys_read32(p->addr);
if (p->stop_mask) {
sys_write32(ds_ctx.timers[i] | p->stop_mask, p->addr);
} else {
sys_write32(0, p->addr);
}
p++;
}
}
static void deep_sleep_restore_ecs(void)
{
#ifdef DEEP_SLEEP_JTAG
struct ecs_regs *regs = ECS_XEC_REG_BASE;
regs->ETM_CTRL = ds_ctx.ecs[0];
regs->DEBUG_CTRL = ds_ctx.ecs[1];
#endif
}
#ifdef DEEP_SLEEP_UART_SAVE_RESTORE
static void deep_sleep_restore_uarts(void)
{
struct uart_regs *regs0 = UART_0_XEC_REG_BASE;
struct uart_regs *regs1 = UART_1_XEC_REG_BASE;
regs0->ACTV = ds_ctx.uart_info[0];
regs1->ACTV = ds_ctx.uart_info[1];
}
#endif
static void deep_sleep_restore_timers(void)
{
const struct ds_timer_info *p;
uint32_t i, temp;
p = &ds_timer_tbl[0];
for (i = 0; i < NUM_DS_TIMER_ENTRIES; i++) {
if (p->stop_mask) {
temp = sys_read32(p->addr) & ~(p->stop_mask);
sys_write32(temp, p->addr);
} else {
sys_write32(ds_ctx.timers[i] & ~p->restore_mask,
p->addr);
}
p++;
}
}
#ifdef DEEP_SLEEP_PERIPH_SAVE_RESTORE_EXTENDED
static void deep_sleep_save_blocks(void)
{
struct tfdp_regs *tfdp = TFDP_0_XEC_REG_BASE;
struct ecs_regs *ecs = ECS_XEC_REG_BASE;
#ifdef CONFIG_ADC
struct adc_regs *adc0 = ADC_0_XEC_REG_BASE;
/* ADC deactivate */
adc0->CONTROL &= ~(MCHP_ADC_CTRL_ACTV);
#endif
#ifdef CONFIG_PECI
struct peci_regs *peci = PECI_XEC_REG_BASE;
ds_ctx.peci_info.peci_ctrl = peci->CONTROL;
ds_ctx.peci_info.peci_dis = ecs->PECI_DIS;
ecs->PECI_DIS |= MCHP_ECS_PECI_DISABLE;
#endif
#ifdef CONFIG_I2C
for (size_t n = 0; n > MCHP_I2C_SMB_INSTANCES; n++) {
uint32_t addr = MCHP_I2C_SMB_BASE_ADDR(n) +
MCHP_I2C_SMB_CFG_OFS;
uint32_t regval = sys_read32(addr);
ds_ctx.smb_info[n] = regval;
sys_write32(regval & ~(MCHP_I2C_SMB_CFG_ENAB), addr);
}
#endif
/* Disable comparator if enabled */
if (ecs->CMP_CTRL & BIT(0)) {
ds_ctx.comp_en = 1;
ecs->CMP_CTRL &= ~(MCHP_ECS_ACC_EN0);
}
#if defined(CONFIG_TACH_XEC) || defined(CONFIG_PWM_XEC)
struct pcr_regs *pcr = PCR_XEC_REG_BASE;
/* This low-speed clock derived from the 48MHz clock domain is used as
* a time base for PWMs and TACHs
* Set SLOW_CLOCK_DIVIDE = CLKOFF to save additional power
*/
ds_ctx.slwclk_info = pcr->SLOW_CLK_CTRL;
pcr->SLOW_CLK_CTRL &= (~MCHP_PCR_SLOW_CLK_CTRL_100KHZ &
MCHP_PCR_SLOW_CLK_CTRL_MASK);
#endif
/* TFDP HW block is not expose to any Zephyr subsystem */
if (tfdp->CTRL & MCHP_TFDP_CTRL_EN) {
ds_ctx.tfdp_en = 1;
tfdp->CTRL &= ~MCHP_TFDP_CTRL_EN;
}
/* Port 80 TODO Do we need to do anything? MEC172x BDP does not
* include a timer so it should de-assert its CLK_REQ in response
* to SLP_EN 0->1.
*/
}
static void deep_sleep_restore_blocks(void)
{
struct tfdp_regs *tfdp = TFDP_0_XEC_REG_BASE;
struct ecs_regs *ecs = ECS_XEC_REG_BASE;
#ifdef CONFIG_ADC
struct adc_regs *adc0 = ADC_0_XEC_REG_BASE;
adc0->CONTROL |= MCHP_ADC_CTRL_ACTV;
#endif
#ifdef CONFIG_PECI
struct peci_regs *peci = PECI_XEC_REG_BASE;
ecs->PECI_DIS = ds_ctx.peci_info.peci_dis;
peci->CONTROL = ds_ctx.peci_info.peci_ctrl;
#endif
#ifdef CONFIG_I2C
for (size_t n = 0; n > MCHP_I2C_SMB_INSTANCES; n++) {
uint32_t addr = MCHP_I2C_SMB_BASE_ADDR(n) +
MCHP_I2C_SMB_CFG_OFS;
sys_write32(ds_ctx.smb_info[n], addr);
}
#endif
/* Restore comparator control values */
if (ds_ctx.comp_en) {
ecs->CMP_CTRL |= MCHP_ECS_ACC_EN0;
}
#if defined(CONFIG_TACH_XEC) || defined(CONFIG_PWM_XEC)
struct pcr_regs *pcr = PCR_XEC_REG_BASE;
/* Restore slow clock control */
pcr->SLOW_CLK_CTRL = ds_ctx.slwclk_info;
#endif
/* TFDP HW block is not expose to any Zephyr subsystem */
if (ds_ctx.tfdp_en) {
tfdp->CTRL |= MCHP_TFDP_CTRL_EN;
}
}
#endif /* DEEP_SLEEP_PERIPH_SAVE_RESTORE_EXTENDED */
void soc_deep_sleep_periph_save(void)
{
#ifdef DEEP_SLEEP_PERIPH_SAVE_RESTORE_EXTENDED
deep_sleep_save_blocks();
#endif
deep_sleep_save_ecs();
deep_sleep_save_timers();
#ifdef DEEP_SLEEP_UART_SAVE_RESTORE
deep_sleep_save_uarts();
#endif
}
void soc_deep_sleep_periph_restore(void)
{
deep_sleep_restore_ecs();
#ifdef DEEP_SLEEP_UART_SAVE_RESTORE
deep_sleep_restore_uarts();
#endif
deep_sleep_restore_timers();
#ifdef DEEP_SLEEP_PERIPH_SAVE_RESTORE_EXTENDED
deep_sleep_restore_blocks();
#endif
}
#else
void soc_deep_sleep_periph_save(void)
{
}
void soc_deep_sleep_periph_restore(void)
{
}
#endif /* DEEP_SLEEP_PERIPH_SAVE_RESTORE */

View file

@ -0,0 +1,101 @@
/*
* Copyright (c) 2019 Microchip Technology Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef __DEVICE_POWER_H
#define __DEVICE_POWER_H
#ifndef _ASMLANGUAGE
#define DEBUG_SLEEP
#define DEBUG_DEEP_SLEEP_CLK_REQ
/*
* Disable UART deep sleep save/restore. If a UART TX FIFO has data on deep
* sleep entry it will de-assert its CLK_REQ once TX FIFO empties. If the
* UART has TX empty interrupt enabled then the system will wake.
*/
/* #define DEEP_SLEEP_UART_SAVE_RESTORE */
/* Enable SoC control over peripherals only when drivers do not support
* power management
*/
#ifndef CONFIG_PM_DEVICE
/* Comment out to use JTAG without interruptions.
* Beware this blocks PLL going off, hence should be enabled
* for power consumption measurements
* Note: To attach JTAG for any debug need to be performed with breakpoint
* prior to deep sleep entry.
*/
/* #define DEEP_SLEEP_JTAG */
/*
* Enabling this would take a snapshot from clock requested values,
* these can be dump on exit to identify which HW block is blocking.
*/
#define DEEP_SLEEP_CLK_REQ_DUMP
/*
* Some peripherals if enabled always assert their CLK_REQ bits.
* For example, any peripheral with a clock generator such as
* timers, counters, UART, etc. We save the enables for these
* peripherals, disable them, and restore the enabled state upon
* wake.
*/
#define DEEP_SLEEP_PERIPH_SAVE_RESTORE
/* Power optimization if certain HW blocks are not used.
* These are not part of any Zephyr subsystem.
* #define DEEP_SLEEP_PERIPH_SAVE_RESTORE_EXTENDED
*/
#define DEEP_SLEEP_PERIPH_SAVE_RESTORE_EXTENDED
#define NUM_DS_TIMER_ENTRIES 6
struct ds_timer_info {
uintptr_t addr;
uint32_t stop_mask;
uint32_t restore_mask;
};
struct ds_peci_info {
uint32_t peci_ctrl;
uint32_t peci_dis;
};
struct ds_dev_info {
uint32_t ecs[2];
uint32_t timers[NUM_DS_TIMER_ENTRIES];
#ifdef DEEP_SLEEP_UART_SAVE_RESTORE
uint8_t uart_info[MCHP_UART_INSTANCES];
#endif
/* Analog power */
#ifdef CONFIG_PECI
struct ds_peci_info peci_info;
#endif
#ifdef CONFIG_I2C
uint32_t smb_info[MCHP_I2C_SMB_INSTANCES];
#endif
uint32_t slwclk_info;
uint8_t tfdp_en;
uint8_t comp_en;
};
#endif /* CONFIG_PM_DEVICE */
void soc_deep_sleep_periph_save(void);
void soc_deep_sleep_periph_restore(void);
void soc_deep_sleep_non_wake_en(void);
void soc_deep_sleep_non_wake_dis(void);
void soc_deep_sleep_wake_en(void);
void soc_deep_sleep_wake_dis(void);
#ifdef DEBUG_DEEP_SLEEP_CLK_REQ
void soc_debug_sleep_clk_req(void);
#endif
#endif /* _ASMLANGUAGE */
#endif /* __DEVICE_POWER_H */

View file

@ -0,0 +1,189 @@
/*
* Copyright (c) 2019 Microchip Technology Inc.
* Copyright (c) 2016 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr.h>
#include <sys/sys_io.h>
#include <sys/__assert.h>
#include <pm/pm.h>
#include <soc.h>
#include <arch/cpu.h>
#include <arch/arm/aarch32/cortex_m/cmsis.h>
#ifndef CONFIG_PM_DEVICE
#include "device_power.h"
#endif
#include "soc_power_debug.h"
#define HTMR_0_XEC_REG_BASE \
((struct htmr_regs *)(DT_REG_ADDR(DT_NODELABEL(hibtimer0))))
#define PCR_XEC_REG_BASE \
((struct pcr_regs *)(DT_REG_ADDR(DT_NODELABEL(pcr))))
/*
* Deep Sleep
* Pros:
* Lower power dissipation, 48MHz PLL is off
* Cons:
* Longer wake latency. CPU start running on ring oscillator
* between 16 to 25 MHz. Minimum 3ms until PLL reaches lock
* frequency of 48MHz.
*
* Implementation Notes:
* We touch the Cortex-M's primary mask and base priority registers
* because we do not want to enter an ISR immediately upon wake.
* We must restore any hardware state that was modified upon sleep
* entry before allowing interrupts to be serviced. Zephyr arch level
* does not provide API's to manipulate both primary mask and base priority.
*
* DEBUG NOTES:
* If a JTAG/SWD debug probe is connected driving TRST# high and
* possibly polling the DUT then MEC1501 will not shut off its 48MHz
* PLL. Firmware should not disable JTAG/SWD in the EC subsystem
* while a probe is using the interface. This can leave the JTAG/SWD
* TAP controller in a state of requesting clocks preventing the PLL
* from being shut off.
*/
/* NOTE: Zephyr masks interrupts using BASEPRI before calling PM subsystem */
static void z_power_soc_deep_sleep(void)
{
struct pcr_regs *pcr = PCR_XEC_REG_BASE;
struct htmr_regs *htmr0 = HTMR_0_XEC_REG_BASE;
uint32_t basepri = 0U;
uint32_t temp = 0U;
PM_DP_ENTER();
__disable_irq();
basepri = __get_BASEPRI();
#ifndef CONFIG_PM_DEVICE
soc_deep_sleep_periph_save();
soc_deep_sleep_wake_en();
soc_deep_sleep_non_wake_en();
#endif
/*
* Enable deep sleep mode in CM4 and MEC172x.
* Enable CM4 deep sleep and sleep signals assertion on WFI.
* Set MCHP Heavy sleep (PLL OFF when all CLK_REQ clear) and SLEEP_ALL
* to assert SLP_EN to all peripherals on WFI.
* Set PRIMASK = 1 so on wake the CPU will not vector to any ISR.
* Set BASEPRI = 0 to allow any priority to wake.
*/
SCB->SCR |= BIT(2);
pcr->SYS_SLP_CTRL = MCHP_PCR_SYS_SLP_HEAVY;
pcr->OSC_ID = pcr->SYS_SLP_CTRL;
#ifdef DEBUG_DEEP_SLEEP_CLK_REQ
soc_debug_sleep_clk_req();
#endif
__set_BASEPRI(0);
__WFI(); /* triggers sleep hardware */
__NOP();
__NOP();
/*
* Clear SLEEP_ALL manually since we are not vectoring to an ISR until
* PM post ops. This de-asserts peripheral SLP_EN signals.
*/
pcr->SYS_SLP_CTRL = 0U;
SCB->SCR &= ~BIT(2);
/* Wait for PLL to lock with timeout */
htmr0->PRLD = 0U; /* make sure its stopped */
htmr0->CTRL = 0U; /* 30.5 us per tick */
htmr0->PRLD = 216U; /* ~6.6 ms 2x the expected lock time */
temp = htmr0->PRLD;
while ((pcr->OSC_ID & MCHP_PCR_OSC_ID_PLL_LOCK) == 0) {
temp = htmr0->PRLD;
if (!temp) {
break;
}
}
htmr0->PRLD = 0U; /* stop */
__set_BASEPRI(basepri);
#ifndef CONFIG_PM_DEVICE
soc_deep_sleep_non_wake_dis();
soc_deep_sleep_wake_dis();
soc_deep_sleep_periph_restore();
#endif
PM_DP_EXIT();
}
/*
* Light Sleep
* Pros:
* Fast wake response:
* Cons:
* Higher power dissipation, 48MHz PLL remains on.
*
* When the kernel calls this it has masked interrupt by setting NVIC BASEPRI
* equal to a value equal to the highest Zephyr ISR priority. Only NVIC
* exceptions will be served.
*/
static void z_power_soc_sleep(void)
{
struct pcr_regs *pcr = PCR_XEC_REG_BASE;
__disable_irq();
SCB->SCR &= ~BIT(2);
pcr->SYS_SLP_CTRL = MCHP_PCR_SYS_SLP_LIGHT;
pcr->OSC_ID = pcr->SYS_SLP_CTRL;
__set_BASEPRI(0);
__WFI(); /* triggers sleep hardware */
__NOP();
__NOP();
pcr->SYS_SLP_CTRL = 0U;
}
/*
* Called from pm_system_suspend(int32_t ticks) in subsys/power.c
* For deep sleep pm_system_suspend has executed all the driver
* power management call backs.
*/
__weak void pm_state_set(enum pm_state state, uint8_t substate_id)
{
ARG_UNUSED(substate_id);
switch (state) {
case PM_STATE_SUSPEND_TO_IDLE:
z_power_soc_sleep();
break;
case PM_STATE_SUSPEND_TO_RAM:
z_power_soc_deep_sleep();
break;
default:
break;
}
}
/*
* Zephyr PM code expects us to enabled interrupt at post op exit. Zephyr used
* arch_irq_lock() which sets BASEPRI to a non-zero value masking all interrupts
* preventing wake. MCHP z_power_soc_(deep)_sleep sets PRIMASK=1 and BASEPRI=0
* allowing wake from any enabled interrupt and prevent CPU from entering any
* ISR on wake except for faults. We re-enable interrupt by setting PRIMASK to 0.
* Side-effect is we set BASEPRI=0. Is this the same value as Zephyr uses during
* NVIC initialization?
*/
__weak void pm_state_exit_post_ops(enum pm_state state, uint8_t substate_id)
{
switch (state) {
case PM_STATE_SUSPEND_TO_IDLE:
case PM_STATE_SUSPEND_TO_RAM:
__enable_irq();
break;
default:
irq_unlock(0); /* this writes CM4 BASEPRI=0 */
break;
}
}

View file

@ -16,6 +16,15 @@ static int soc_init(const struct device *dev)
{
ARG_UNUSED(dev);
if (IS_ENABLED(CONFIG_SOC_MEC172X_TEST_CLK_OUT)) {
struct gpio_regs * const regs =
(struct gpio_regs * const)DT_REG_ADDR(DT_NODELABEL(pinctrl));
regs->CTRL[MCHP_GPIO_0060_ID] = MCHP_GPIO_CTRL_MUX_F2 |
MCHP_GPIO_CTRL_IDET_DISABLE;
}
return 0;
}

View file

@ -0,0 +1,40 @@
/*
* Copyright (c) 2021 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef __SOC_POWER_DEBUG_H__
#define __SOC_POWER_DEBUG_H__
/* #define SOC_SLEEP_STATE_GPIO_MARKER_DEBUG */
#ifdef SOC_SLEEP_STATE_GPIO_MARKER_DEBUG
/* Select a gpio not used. LED4 on EVB. High = ON */
#define DP_GPIO_ID MCHP_GPIO_0241_ID
/* output drive high */
#define PM_DP_ENTER_GPIO_VAL 0x10240U
/* output drive low */
#define PM_DP_EXIT_GPIO_VAL 0x0240U
static inline void pm_dp_gpio(uint32_t gpio_ctrl_val)
{
struct gpio_regs * const regs =
(struct gpio_regs * const)(DT_REG_ADDR(DT_NODELABEL(gpio_000_036)));
regs->CTRL[DP_GPIO_ID] = gpio_ctrl_val;
}
#endif
#ifdef DP_GPIO_ID
#define PM_DP_ENTER() pm_dp_gpio(PM_DP_ENTER_GPIO_VAL)
#define PM_DP_EXIT() pm_dp_gpio(PM_DP_EXIT_GPIO_VAL)
#else
#define PM_DP_ENTER()
#define PM_DP_EXIT()
#endif
#endif /* __SOC_POWER_DEBUG_H__ */