kernel: Express legacy time conversions using new API

Remove the older time conversion utilities and use the new ones
exclusively, with preprocessor macros to provide the older symbols for
compatibility.

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
This commit is contained in:
Andy Ross 2019-10-03 11:19:24 -07:00 committed by Carles Cufí
parent a63a3e2e48
commit f2b75fd644

View file

@ -33,20 +33,6 @@ extern int _sys_clock_always_on;
extern void z_enable_sys_clock(void);
#endif
/* Note that some systems with comparatively slow cycle counters
* experience precision loss when doing math like this. In the
* general case it is not correct that "cycles" are much faster than
* "ticks".
*/
static inline int sys_clock_hw_cycles_per_tick(void)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
return sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
#else
return 1; /* Just to avoid a division by zero */
#endif
}
#if defined(CONFIG_SYS_CLOCK_EXISTS) && \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 0)
#error "SYS_CLOCK_HW_CYCLES_PER_SEC must be non-zero!"
@ -86,78 +72,17 @@ static inline int sys_clock_hw_cycles_per_tick(void)
#endif
static ALWAYS_INLINE s32_t z_ms_to_ticks(s32_t ms)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
#ifdef _NEED_PRECISE_TICK_MS_CONVERSION
int cyc = sys_clock_hw_cycles_per_sec();
/* use 64-bit math to keep precision */
return (s32_t)ceiling_fraction((s64_t)ms * cyc,
((s64_t)MSEC_PER_SEC * cyc) / CONFIG_SYS_CLOCK_TICKS_PER_SEC);
#else
/* simple division keeps precision */
s32_t ms_per_tick = MSEC_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
return (s32_t)ceiling_fraction(ms, ms_per_tick);
#endif
#else
__ASSERT(ms == 0, "ms not zero");
return 0;
#endif
}
static inline u64_t __ticks_to_ms(s64_t ticks)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
return (u64_t)ticks * MSEC_PER_SEC /
(u64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC;
#else
__ASSERT(ticks == 0, "ticks not zero");
return 0ULL;
#endif
}
/*
* These are only currently used by k_usleep(), but they are
* defined here for parity with their ms analogs above. Note:
* we don't bother trying the 32-bit intermediate shortcuts
* possible with ms, because of the magnitudes involved.
*/
static inline s32_t z_us_to_ticks(s32_t us)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
return (s32_t) ceiling_fraction(
(s64_t)us * sys_clock_hw_cycles_per_sec(),
((s64_t)USEC_PER_SEC * sys_clock_hw_cycles_per_sec()) /
CONFIG_SYS_CLOCK_TICKS_PER_SEC);
#else
__ASSERT(us == 0, "us not zero");
return 0;
#endif
}
static inline s32_t __ticks_to_us(s32_t ticks)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
return (s32_t) ((s64_t)ticks * USEC_PER_SEC /
(s64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC);
#else
__ASSERT(ticks == 0, "ticks not zero");
return 0;
#endif
}
#define __ticks_to_ms(t) k_ticks_to_ms_floor64(t)
#define z_ms_to_ticks(t) k_ms_to_ticks_ceil32(t)
#define __ticks_to_us(t) k_ticks_to_us_floor64(t)
#define z_us_to_ticks(t) k_us_to_ticks_ceil64(t)
#define sys_clock_hw_cycles_per_tick() k_ticks_to_cyc_floor32(1)
#define SYS_CLOCK_HW_CYCLES_TO_NS64(t) (1000 * k_cyc_to_us_floor64(t))
#define SYS_CLOCK_HW_CYCLES_TO_NS(t) ((u32_t)(1000 * k_cyc_to_us_floor64(t)))
/* added tick needed to account for tick in progress */
#define _TICK_ALIGN 1
/* SYS_CLOCK_HW_CYCLES_TO_NS64 converts CPU clock cycles to nanoseconds */
#define SYS_CLOCK_HW_CYCLES_TO_NS64(X) \
(((u64_t)(X) * NSEC_PER_SEC) / sys_clock_hw_cycles_per_sec())
/*
* SYS_CLOCK_HW_CYCLES_TO_NS_AVG converts CPU clock cycles to nanoseconds
* and calculates the average cycle time
@ -171,18 +96,6 @@ static inline s32_t __ticks_to_us(s32_t ticks)
* @{
*/
/**
* @brief Compute nanoseconds from hardware clock cycles.
*
* This macro converts a time duration expressed in hardware clock cycles
* to the equivalent duration expressed in nanoseconds.
*
* @param X Duration in hardware clock cycles.
*
* @return Duration in nanoseconds.
*/
#define SYS_CLOCK_HW_CYCLES_TO_NS(X) (u32_t)(SYS_CLOCK_HW_CYCLES_TO_NS64(X))
/**
* @} end defgroup clock_apis
*/