This set of functions seem to be there just because of historical
reasons, stemming from Kbuild. They are non-obvious and prone to errors,
so remove them in favor of the `_ifdef()` ones with an explicit
`CONFIG_` condition.
Script used:
git grep -l _if_kconfig | xargs sed -E -i
"s/_if_kconfig\(\s*(\w*)/_ifdef(CONFIG_\U\1\E \1/g"
Signed-off-by: Carles Cufi <carles.cufi@nordicsemi.no>
These stacks are appropriate for threads that run purely in
supervisor mode, and also as stacks for interrupt and exception
handling.
Two new arch defines are introduced:
- ARCH_KERNEL_STACK_GUARD_SIZE
- ARCH_KERNEL_STACK_OBJ_ALIGN
New public declaration macros:
- K_KERNEL_STACK_RESERVED
- K_KERNEL_STACK_EXTERN
- K_KERNEL_STACK_DEFINE
- K_KERNEL_STACK_ARRAY_DEFINE
- K_KERNEL_STACK_MEMBER
- K_KERNEL_STACK_SIZEOF
If user mode is not enabled, K_KERNEL_STACK_* and K_THREAD_STACK_*
are equivalent.
Separately generated privilege elevation stacks are now declared
like kernel stacks, removing the need for K_PRIVILEGE_STACK_ALIGN.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This now takes a stack pointer as an argument with TLS
and random offsets accounted for properly.
Based on #24467 authored by Flavio Ceolin.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The core kernel computes the initial stack pointer
for a thread, properly aligning it and subtracting out
any random offsets or thread-local storage areas.
arch_new_thread() no longer needs to make any calculations,
an initial stack frame may be placed at the bounds of
the new 'stack_ptr' parameter passed in. This parameter
replaces 'stack_size'.
thread->stack_info is now set before arch_new_thread()
is invoked, z_new_thread_init() has been removed.
The values populated may need to be adjusted on arches
which carve-out MPU guard space from the actual stack
buffer.
thread->stack_info now has a new member 'delta' which
indicates any offset applied for TLS or random offset.
It's used so the calculations don't need to be repeated
if the thread later drops to user mode.
CONFIG_INIT_STACKS logic is now performed inside
z_setup_new_thread(), before arch_new_thread() is called.
thread->stack_info is now defined as the canonical
user-accessible area within the stack object, including
random offsets and TLS. It will never include any
carved-out memory for MPU guards and must be updated at
runtime if guards are removed.
Available stack space is now optimized. Some arches may
need to significantly round up the buffer size to account
for page-level granularity or MPU power-of-two requirements.
This space is now accounted for and used by virtue of
the Z_THREAD_STACK_SIZE_ADJUST() call in z_setup_new_thread.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
MISRA-C wants the parameter names in a function implementaion
to match the names used by the header prototype.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This interface is documented already in
kernel/include/kernel_arch_interface.h
Other architectural notes were left in place except where
they were incorrect (like the thread struct
being in the low stack addresses)
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
arch_new_thread() passes along the thread priority and option
flags, but these are already initialized in thread->base and
can be accessed there if needed.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
In CPUs with VTOR we are free to place the relay vector table
section anywhere inside ROM_START section (as long as we respect
alignment requirements). This PR moves the relay table towards
the end of ROM_START. This leaves sufficient area for placing
some SoC-specific sections inside ROM_START that need to start
at a fixed address.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
printf function didn't have enough specifiers for the
number of arguments in the command line (Coverity warning).
Fixes#26985Fixes#26986
Signed-off-by: David Leach <david.leach@nxp.com>
Rewrite 'exit_tickless_idle' macro to make code more readable.
No functional changes intended.
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
NOP instruction is available via builtin for ARC so get rid of all
ASM inlines with NOP/NOP_S instructions.
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
_vector_table and __vector_relay_table symbols were exported with GTEXT
(i.e. as functions). That resulted in bit[0] being incorrectly set in
the addresses they represent (for functions this bit set to 1 specifies
execution in Thumb state).
This commit corrects this by switching to exporting these objects as
objects, i.e. with GDATA.
Signed-off-by: Andrzej Głąbek <andrzej.glabek@nordicsemi.no>
MISRA-C directive 4.10 requires that files being included must
prevent itself from being included more than once. So add
include guards to the offset files, even though they are C
source files.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
MISRA-C directive 4.10 requires that files being included must
prevent itself from being included more than once. So add
include guards to the offset files, even though they are C
source files.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Race conditions exist when remapping the NXP MPU. When writing the
start, end, or attribute registers of a MPU descriptor, the hardware
will automatically clear the region's valid bit. If that region gets
accessed before the code is able to set the valid bit, the core will
fault.
Issue #20595 revealled this problem with the code in region_init()
when the compiler options are set to no optimizations. The code
generated by the compiler put local variables on the stack and then
read those stack based variables when writing the MPU descriptor
registers. If that region mapped the stack a memory fault would occur.
Higher compiler optimizations would store these local variables in
CPU registers which avoided the memory access when programming the
MPU descriptor.
Because the NXP MPU uses a logic OR operation of the MPU descriptors,
the fix uses the last descriptor in the MPU hardware to remap all of
dynamic memory for access instead of the first of the dynamic memory
descriptors as was occuring before. This allows reprogramming of the
primary discriptor blocks without having a memory fault. After all
the dynamic memory blocks are mapped, the unused blocks will have
their valid bits cleared including this temporary one, if it wasn't
alread changed during the mapping of the current set.
Fixes#20595
Signed-off-by: David Leach <david.leach@nxp.com>
Switch nSIM from custom ARC UART to ns16550 model. That will
allow us to use zephyr images built for nSIM on other platforms
like HAPS, QEMU, etc...
This patch do:
* switch nSIM board to ns16550 UART usage
* change nSIM simulator configuration to use ns16550 UART model
* drop checks for CONFIG_UART_NSIM in ARC code
* update nSIM documentation
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
It's not safe to assume that the data section is 8-byte aligned.
Assuming 4-byte alignment seems to work however, and results in
simpler code than arbitrary alignment support.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
The hardware stack overflow feature requires
CONFIG_THREAD_STACK_INFO enabled in order to distingush
stack overflows from other causes when we get an exception.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
A hack was required for the loapic code due to the address
range not being in DTS. A bug was filed.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This driver code uses PCIe and doesn't use Zephyr's
device model, so we can't use the nice DEVICE_MMIO macros.
Set stuff up manually instead using device_map().
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This currently only supports identity paging; there's just
enough here for device_map() calls to work.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This config indicates that a memory management unit is present
and enabled, which will in turn allow arch APIs to allow
mapping memory to be used.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Adding just the cache flush function for x86. The name
arch_cache_flush comply with API names in include/cache.h
Signed-off-by: Aastha Grover <aastha.grover@intel.com>
The p_memsz field which indicates the size of a segment in memory
isn't always a multiple of 8. Remove the assert and add padding if
necessary. Without this change it's not possible to generate EFI
binaries out of all samples & tests in the tree.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Zephyr applications will always use the VTOR register when it is
available on the CPU and the register will always be configured
to point to applications vector table during startup.
SW_VECTOR_RELAY_CLIENT is meant to be used only on baseline ARM cores.
SW_VECTOR_RELAY is intended to be used only by the bootloader.
The bootloader may configure the VTOR to point to the relay table
right before chain-loading the application.
Signed-off-by: Rafał Kuźnia <rafal.kuznia@nordicsemi.no>
Select either SW_VECTOR_RELAY or SW_VECTOR_RELAY_CLIENT
at the time.
Removed #ifdef-ry in irq_relay.S as SW_VECTOR_RELAY was
refined so it became reserved for the bootloader and it
conditionally includes irq_relay.S for compilation.
See SHA #fde3116f1981cf152aadc2266c66f8687ea9f764
Signed-off-by: Andrzej Puzdrowski <andrzej.puzdrowski@nordicsemi.no>
Signed-off-by: Rafał Kuźnia <rafal.kuznia@nordicsemi.no>
This patch allows the `SW_VECTOR_RELAY` and
`SW_VECTOR_RELAY_CLIENT` pair to be
enabled on the ARMv7-M and ARMv8-M architectures
and covers all additional interrupt vectors.
Signed-off-by: Rafał Kuźnia <rafal.kuznia@nordicsemi.no>
Signed-off-by: Andrzej Puzdrowski <andrzej.puzdrowski@nordicsemi.no>
The optional SOC_CONTEXT carries processor state registers that need to
be initialized properly to avoid uninitialized memory read as processor
state.
In particular on the RV32M1 the extra soc context stores a state for
special loop instructions, and loading non zero values will have the
core assume it is in a loop.
Signed-off-by: Karsten Koenig <karsten.koenig.030@gmail.com>
The `TEXT_SECTION_OFFSET` symbol is used to specify the offset between
the beginning of the ROM area and the address of the first ROM section.
This commit renames `TEXT_SECTION_OFFSET` to `ROM_START_OFFSET` because
the first ROM section is not always the `.text` section.
Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
The page table initialization needs a populated PCI MMIO
configuration, and that is lazy-evaluated. We aren't guaranteed that
a driver already hit that path, so be sure to call it explicitly.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The firmware on existing devices uses HPET timer zero for its own
purposes, and leaves it alive with interrupts enabled. The Zephyr
driver now knows how to recover from this state with fuller
initialization, but that's not enough to fix the inherent race:
The timer can fire BEFORE the driver initialization happens (and does,
with certain versions of the EFI shell), thus flagging an interrupt to
what Zephyr sees as a garbage vector. The OS can't fix this on its
own, the EFI bootloader (which is running with interrupts enabled as
part of the EFI environment) has to do it. Here we can know that our
setting got there in time and didn't result in a stale interrupt flag
in the APIC waiting to blow up when interrupts get enabled.
Note: this is really just a workaround. It assumes the hardware has
an HPET with a standard address. Ideally we'd be able to build zefi
using Zephyr kconfig and devicetree values and predicate the HPET
reset on the correct configuraiton.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Right now x86_64 doesn't install handlers for vectors that aren't
populated by Zephyr code. Add a tiny spurious interrupt handler that
logs the error and triggers a fatal error, like other platforms do.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
This patch is almost entirely aesthetics, designed to isolate the
variant configurations to a simple macro API (just IN/OUT), reduce
complexity derived from code pasted out of the larger ns16550 driver,
and keep the complexity out of the (very simple!) core code. Useful
when hacking on the driver in contexts where it isn't working yet.
The sole behavioral change here is that I've removed the runtime
printk hook installation in favor of defining an
arch_printk_char_out() function which overrides the weak-linked
default (that is, we don't need to install a hook, we can be the
default hook at startup).
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
Various cleanups to the x86 early serial driver, mostly with the goal
of simplifying its deployment during board bringup (which is really
the only reason it exists in the first place):
+ Configure it =y by default. While there are surely constrained
environments that will want to disable it, this is a TINY driver,
and it serves a very important role for niche tasks. It should be
built always to make sure it works everywhere.
+ Decouple from devicetree as much as possible. This code HAS to work
during board bringup, often with configurations cribbed from other
machines, before proper configuration gets written. Experimentally,
devicetree errors tend to be easy to make, and without a working
console impossible to diagnose. Specify the device via integer
constants in soc.h (in the case of IOPORT access, we already had
such a symbol) so that the path from what the developer intends to
what the code executes is as short and obvious as possible.
Unfortunately I'm not allowed to remove devicetree entirely here,
but at least a developer adding a new platform will be able to
override it in an obvious way instead of banging blindly on the
other side of a DTS compiler.
+ Don't try to probe the PCI device by ID to "verify". While this
sounds like a good idea, in practice it's just an extra thing to get
wrong. If we bail on our early console because someone (yes, that's
me) got the bus/device/function right but typoed the VID/DID
numbers, we're doing no one any favors.
+ Remove the word-sized-I/O feature. This is a x86 driver for a PCI
device. No known PC hardware requires that UART register access be
done in dword units (in fact doing so would be a violation of the
PCI specifciation as I understand it). It looks to have been cut
and pasted from the ns16550 driver, remove.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The default page table (the architecturally required one used for
entrance to long mode, before the OS page tables get assembled) was
mapping the first 4G of memory.
Extend this to 512G by fully populating the second level page table.
We have devices now (up_squared) which have real RAM mapped above 4G.
There's really no good reason not to do this, the page is present
always anyway.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
A last minute "cleanup" to the EFI startup path (on a system where I
had SMP disabled) moved the load of the x86_cpuboot[0] entry into RBP
into the main startup code, which is wrong because on auxiliary CPUs
that's already set up by the 16/32 bit entry code to point to the
OTHER entries.
Put it back where it belongs.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
* The stack pointer (SP) register points to the lowest-used address of
a downward-growing stack, so memory address [sp] is used, we can't
modify it.
* In firq_no_switch case, we need to pop sp, which pushed before
_isr_demux function in firq_nest function.
Signed-off-by: Watson Zeng <zhiwei@synopsys.com>
Define vector relay tables for bootloader only.
If an image is not a bootloader image (such as an MCUboot image)
but it is a standard Zephyr firmware, chain-loadable by a
bootloader, then this image will not need to relay IRQs itself.
In this case SW_VECTOR_RELAY_CLIENT should be used to setting the
vector table pointer in RAM so the parent image can forward the
interrupts to it.
Signed-off-by: Ioannis Glaropoulos <Ioannis.Glaropoulos@nordicsemi.no>
Co-authored-by: Øyvind Rønningstad <oyvind.ronningstad@nordicsemi.no>
Signed-off-by: Andrzej Puzdrowski <andrzej.puzdrowski@nordicsemi.no>
This is a first cut on a tool that will convert a built Zephyr ELF
file into an EFI applciation suitable for launching directly from the
firmware of a UEFI-capable device, without the need for an external
bootloader.
It works by including the Zephyr sections into the EFI binary as
blobs, then copying them into place on startup.
Currently, it is not integrated in the build. Right now you have to
build an image for your target (up_squared has been tested) and then
pass the resulting zephyr.elf file as an argument to the
arch/x86/zefi/zefi.py script. It will produce a "zephyr.efi" file in
the current directory.
This involved a little surgery in x86_64 to copy over some setup that
was previously being done in 32 bit mode to a new EFI entry point.
There is no support for 32 bit UEFI targets for toolchain reasons.
See the README for more details.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The traditional IO Port configuration mechanism was technically
deprecated about 15 years ago when PCI Express started shipping.
While frankly the MMIO support is significantly more complicated and
no more performant in practice, Zephyr should have support for current
standards. And (particularly complicated) devices do exist in the
wild whose extended capability pointers spill beyond the 256 byte area
allowed by the legacy mechanism. Zephyr will want drivers for those
some day.
Also, Windows and Linux use MMIO access, which means that's what
system vendors validate.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The existing minimal ACPI implementation was enough to find the MADT
table for dumping CPU info. Enhance it with a slightly less minimal
implementation that can fetch any table, supports the ACPI 2.0 XSDT
directory (technically required on 64 bit systems so tables can live
>4G) and provides definitions for the MCFG table with the PCI
configuration pointers.
Note that there is no use case right now for high performance table
searching, so the "init" step has been removed and tables are probed
independently from scratch for each one requested (there are only
two).
Note also that the memory to which these tables point is not
understood by the Zephyr MMU configuration, so in long mode all ACPI
calls have to be done very early, before z_x86_paging_init() (or on a
build with the MMU initialization disabled).
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
If we get a page fault in early boot context, before
main thread is started, page faults were being
incorrectly reported as stack overflows.
z_x86_check_stack_bounds() needs to consider the
interrupt stack as the correct stack for this context.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>