The RSSI value in net_pkt (net_pkt_cb_ieee802154.rssi) was used
inconsistently across drivers. Some drivers did cast a signed dBm value
directly to net_pkt's unsigned byte value. Others were assigning the
negative value of the signed dBm value and again others were offsetting
and stretching the signed dBm value linearly onto the full unsigned byte
range.
This change standardizes net_pkt's rssi attribute to represent RSSI on
the RX path as an unsigned integer ranging from 0 (–174 dBm) to 254 (80
dBm) and lets 255 represent an "unknown RSSI" (IEEE 802.15.4-2020,
section 6.16.2.8). On the TX path the rssi attribute will always be
zero. Out-of-range values will be truncated to max/min values.
The change also introduces conversion functions to and from signed dBm
values and introduces these consistently to all existing call sites. The
"unknown RSSI" value is represented as INT16_MIN in this case.
In some cases drivers had to be changed to calculate dBm values from
internal hardware specific representations.
The conversion functions are fully covered by unit tests.
Fixes: #58494
Signed-off-by: Florian Grandel <fgrandel@code-for-humans.de>
In order to bring consistency in-tree, migrate all drivers to the new
prefix <zephyr/...>. Note that the conversion has been scripted, refer
to #45388 for more details.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
Convert cc1200 driver to `spi_dt_spec` and `gpio_dt_spec`. Required a
whole driver conversion from passing around the driver data struct to
passing around the driver itself.
Signed-off-by: Jordan Yates <jordan.yates@data61.csiro.au>
Now that device_api attribute is unmodified at runtime, as well as all
the other attributes, it is possible to switch all device driver
instance to be constant.
A coccinelle rule is used for this:
@r_const_dev_1
disable optional_qualifier
@
@@
-struct device *
+const struct device *
@r_const_dev_2
disable optional_qualifier
@
@@
-struct device * const
+const struct device *
Fixes#27399
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
Update to use new API for GPIO pin configuration and operation. Fix
invalid arithmetic on void pointer. Convert to support devicetree.
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
Signed-off-by: Peter Bigot <peter.bigot@nordicsemi.no>
The build infrastructure should not be adding the drivers subdirectory
to the include path. Fix the legacy uses that depended on that
addition.
Signed-off-by: Peter Bigot <peter.bigot@nordicsemi.no>
move spi.h to drivers/spi.h and
create a shim for backward-compatibility.
No functional changes to the headers.
A warning in the shim can be controlled with CONFIG_COMPAT_INCLUDES.
Related to #16539
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
move atomic.h to sys/atomic.h and
create a shim for backward-compatibility.
No functional changes to the headers.
A warning in the shim can be controlled with CONFIG_COMPAT_INCLUDES.
Related to #16539
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Rename reserved function names in drivers/ subdirectory. Update
function macros concatenatenating function names with '##'. As
there is a conflict between the existing gpio_sch_manage_callback()
and _gpio_sch_manage_callback() names, leave the latter unmodified.
Signed-off-by: Patrik Flykt <patrik.flykt@intel.com>
Any word started with underscore followed by and uppercase letter or a
second underscore is a reserved word according with C99.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
tx_bufs/tx_count and rx_bufs/rx_count can be hold in another dedicated
structure, thus reducing the number of parameters to transceive. This
permits to avoid using the stack when calling transceive.
Since we saved parameters, we can expose back the struct device pointer,
to stay consistent with other device driver APIs.
Fixes#5839
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
CC1200 is a sub-ghz chip supporting 6 ISM & SRD bands: 169, 433, 470,
868, 915 and 920 MHz, with features dedicated to IEEE 802.15.4(g).
Current driver enables CC1200 against actual IEEE 802.15.4 Soft-MAC. 'g'
version support in the Soft-MAC will follow later.
The chip itself is closer to a bare metal radio modem than to a usual
15.4 chip: up to the user to provide the right RF settings for the
carrier band. Such settings can be generaten through TI's SmartRF tool.
Hopefully, for channel selection, this driver will be clever enough to
compute the proper register change without any special input from the
user. This will work for all the bands supported by the chip.
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>