The clock/timer APIs are not application facing APIs, however, similar
to arch_ and a few other APIs they are available to implement drivers
and add support for new hardware and are documented and available to be
used outside of the clock/kernel subsystems.
Remove the leading z_ and provide them as clock_* APIs for someone
writing a new timer driver to use.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
This include make possible to use the arm_arch_timer on
platform such as Cortex-A9 or Cortex-R7 which has support for
ARM Global Timer.
The global timer is a 64 bit incrementing counter, memory-mapped
in the private memory region.
Signed-off-by: Julien Massot <julien.massot@iot.bzh>
idle is only considered in other timer implementations if ticks ==
K_TICKS_FOREVER but in arm_arch_timer. Just fix it.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
As timer interrupt is level triggered, we need to mask it before leaving
ISR or it will be delivered again.
Also, Xen automatically masks timer interrupt when it injects IRQ to
a guest, so we need to unmask it again, when setting new timeout.
Signed-off-by: Volodymyr Babchuk <volodymyr_babchuk@epam.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Now that device_api attribute is unmodified at runtime, as well as all
the other attributes, it is possible to switch all device driver
instance to be constant.
A coccinelle rule is used for this:
@r_const_dev_1
disable optional_qualifier
@
@@
-struct device *
+const struct device *
@r_const_dev_2
disable optional_qualifier
@
@@
-struct device * const
+const struct device *
Fixes#27399
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
K_FOREVER/INT_MAX number of ticks needs delay cycles value of
maximum order and exceeds 'int32' range.
The typecast to 'int32' results in wrongly evaluating the value
as less than 'MIN_DELAY' and chooses 'MIN_DELAY' over the actual
delay cycles.
Cap the 'MAX_TICKS' to INT32_MAX.
fixes: #26632
Signed-off-by: Sandeep Tripathy <sandeep.tripathy@broadcom.com>
Use device tree provided configurations for arm architecture timer
PPIs.
This fixes issue of timer ppi not working on most hardware where
edge-triggered PPI are not supported.
Signed-off-by: Sandeep Tripathy <sandeep.tripathy@broadcom.com>
Add a k_timeout_t type, and use it everywhere that kernel API
functions were accepting a millisecond timeout argument. Instead of
forcing milliseconds everywhere (which are often not integrally
representable as system ticks), do the conversion to ticks at the
point where the timeout is created. This avoids an extra unit
conversion in some application code, and allows us to express the
timeout in units other than milliseconds to achieve greater precision.
The existing K_MSEC() et. al. macros now return initializers for a
k_timeout_t.
The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t
values, which means they cannot be operated on as integers.
Applications which have their own APIs that need to inspect these
vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to
test for equality.
Timer drivers, which receive an integer tick count in ther
z_clock_set_timeout() functions, now use the integer-valued
K_TICKS_FOREVER constant instead of K_FOREVER.
For the initial release, to preserve source compatibility, a
CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the
k_timeout_t will remain a compatible 32 bit value that will work with
any legacy Zephyr application.
Some subsystems present timeout (or timeout-like) values to their own
users as APIs that would re-use the kernel's own constants and
conventions. These will require some minor design work to adapt to
the new scheme (in most cases just using k_timeout_t directly in their
own API), and they have not been changed in this patch, instead
selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems
include: CAN Bus, the Microbit display driver, I2S, LoRa modem
drivers, the UART Async API, Video hardware drivers, the console
subsystem, and the network buffer abstraction.
k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant
provided that works identically to the original API.
Most of the changes here are just type/configuration management and
documentation, but there are logic changes in mempool, where a loop
that used a timeout numerically has been reworked using a new
z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was
enabled) a similar loop was needlessly used to try to retry the
k_poll() call after a spurious failure. But k_poll() does not fail
spuriously, so the loop was removed.
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
ARM cores may have a per-core architected timer, which provides per-cpu
timers, attached to a GIC to deliver its per-processor interrupts via
PPIs. This is the most common case supported by QEMU in the virt
platform.
This patch introduces support for this timer abstracting the way the
timer registers are actually accessed. This is needed because different
architectures (for example ARMv7-R vs ARMv8-A) use different registers
and even the same architecture (ARMv8-A) can actually use different
timers (ELx physical timers vs ELx virtual timers).
So we introduce the common driver here but the actual SoC / architecture
/ board must provide the three helpers (arm_arch_timer_set_compare(),
arm_arch_timer_toggle(), arm_arch_timer_count()) using an header file
imported through the arch/cpu.h header file.
Signed-off-by: Carlo Caione <ccaione@baylibre.com>