Timer "drivers" do not use the device model infrastructure, they are
singletons with a SYS_INIT call. This means they do not have to include
device.h but init.h. Things worked because device.h includes init.h.
Signed-off-by: Gerard Marull-Paretas <gerard@teslabs.com>
The init infrastructure, found in `init.h`, is currently used by:
- `SYS_INIT`: to call functions before `main`
- `DEVICE_*`: to initialize devices
They are all sorted according to an initialization level + a priority.
`SYS_INIT` calls are really orthogonal to devices, however, the required
function signature requires a `const struct device *dev` as a first
argument. The only reason for that is because the same init machinery is
used by devices, so we have something like:
```c
struct init_entry {
int (*init)(const struct device *dev);
/* only set by DEVICE_*, otherwise NULL */
const struct device *dev;
}
```
As a result, we end up with such weird/ugly pattern:
```c
static int my_init(const struct device *dev)
{
/* always NULL! add ARG_UNUSED to avoid compiler warning */
ARG_UNUSED(dev);
...
}
```
This is really a result of poor internals isolation. This patch proposes
a to make init entries more flexible so that they can accept sytem
initialization calls like this:
```c
static int my_init(void)
{
...
}
```
This is achieved using a union:
```c
union init_function {
/* for SYS_INIT, used when init_entry.dev == NULL */
int (*sys)(void);
/* for DEVICE*, used when init_entry.dev != NULL */
int (*dev)(const struct device *dev);
};
struct init_entry {
/* stores init function (either for SYS_INIT or DEVICE*)
union init_function init_fn;
/* stores device pointer for DEVICE*, NULL for SYS_INIT. Allows
* to know which union entry to call.
*/
const struct device *dev;
}
```
This solution **does not increase ROM usage**, and allows to offer clean
public APIs for both SYS_INIT and DEVICE*. Note that however, init
machinery keeps a coupling with devices.
**NOTE**: This is a breaking change! All `SYS_INIT` functions will need
to be converted to the new signature. See the script offered in the
following commit.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
init: convert SYS_INIT functions to the new signature
Conversion scripted using scripts/utils/migrate_sys_init.py.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
manifest: update projects for SYS_INIT changes
Update modules with updated SYS_INIT calls:
- hal_ti
- lvgl
- sof
- TraceRecorderSource
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
tests: devicetree: devices: adjust test
Adjust test according to the recently introduced SYS_INIT
infrastructure.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
tests: kernel: threads: adjust SYS_INIT call
Adjust to the new signature: int (*init_fn)(void);
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
Change automated searching for files using "IRQ_CONNECT()" API not
including <zephyr/irq.h>.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
As of today <zephyr/zephyr.h> is 100% equivalent to <zephyr/kernel.h>.
This patch proposes to then include <zephyr/kernel.h> instead of
<zephyr/zephyr.h> since it is more clear that you are including the
Kernel APIs and (probably) nothing else. <zephyr/zephyr.h> sounds like a
catch-all header that may be confusing. Most applications need to
include a bunch of other things to compile, e.g. driver headers or
subsystem headers like BT, logging, etc.
The idea of a catch-all header in Zephyr is probably not feasible
anyway. Reason is that Zephyr is not a library, like it could be for
example `libpython`. Zephyr provides many utilities nowadays: a kernel,
drivers, subsystems, etc and things will likely grow. A catch-all header
would be massive, difficult to keep up-to-date. It is also likely that
an application will only build a small subset. Note that subsystem-level
headers may use a catch-all approach to make things easier, though.
NOTE: This patch is **NOT** removing the header, just removing its usage
in-tree. I'd advocate for its deprecation (add a #warning on it), but I
understand many people will have concerns.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
As with previous commit, make the timer irq a simple integer variable
exported by the timer driver for the benefit of this one test
(tests/kernel/context).
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
In order to bring consistency in-tree, migrate all drivers to the new
prefix <zephyr/...>. Note that the conversion has been scripted, refer
to #45388 for more details.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
The weak symbol sys_clock_driver_init has been removed, therefore moving
the init responsability to the drivers themselves. As a result, the init
function has now been made static on all drivers and moved to the
bottom, following the convention used in other areas.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
This is another API that is being used in all timer drivers and is not
internal to the clock subsystem. Remove the leading z_ and make promote
it to a cross-subsystem API.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
The clock/timer APIs are not application facing APIs, however, similar
to arch_ and a few other APIs they are available to implement drivers
and add support for new hardware and are documented and available to be
used outside of the clock/kernel subsystems.
Remove the leading z_ and provide them as clock_* APIs for someone
writing a new timer driver to use.
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Now that device_api attribute is unmodified at runtime, as well as all
the other attributes, it is possible to switch all device driver
instance to be constant.
A coccinelle rule is used for this:
@r_const_dev_1
disable optional_qualifier
@
@@
-struct device *
+const struct device *
@r_const_dev_2
disable optional_qualifier
@
@@
-struct device * const
+const struct device *
Fixes#27399
Signed-off-by: Tomasz Bursztyka <tomasz.bursztyka@linux.intel.com>
On some SoCs the frequency of the system clock is obtained at run time
as the exact configuration of the hardware is not known at compile time.
On such platforms using CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC define
directly introduces timing errors.
This commit replaces CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC by the call
to inline function sys_clock_hw_cycles_per_sec() which always returns
correct frequency of the system clock.
Signed-off-by: Piotr Zięcik <piotr.ziecik@nordicsemi.no>
move misc/util.h to sys/util.h and
create a shim for backward-compatibility.
No functional changes to the headers.
A warning in the shim can be controlled with CONFIG_COMPAT_INCLUDES.
Related to #16539
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
Move internal and architecture specific headers from include/drivers to
subfolder for timer:
include/drivers/timer
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
The defines related to IRQ priority don't exist and aren't used. So
just pass 0 to IRQ_CONNECT for the priority field.
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
The defines should have had a _0 on them, now that we generate the
proper defines, fixup the cases that used that old scheme.
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
Update reserved function names starting with one underscore, replacing
them as follows:
'_k_' with 'z_'
'_K_' with 'Z_'
'_handler_' with 'z_handl_'
'_Cstart' with 'z_cstart'
'_Swap' with 'z_swap'
This renaming is done on both global and those static function names
in kernel/include and include/. Other static function names in kernel/
are renamed by removing the leading underscore. Other function names
not starting with any prefix listed above are renamed starting with
a 'z_' or 'Z_' prefix.
Function names starting with two or three leading underscores are not
automatcally renamed since these names will collide with the variants
with two or three leading underscores.
Various generator scripts have also been updated as well as perf,
linker and usb files. These are
drivers/serial/uart_handlers.c
include/linker/kobject-text.ld
kernel/include/syscall_handler.h
scripts/gen_kobject_list.py
scripts/gen_syscall_header.py
Signed-off-by: Patrik Flykt <patrik.flykt@intel.com>
Converts the rv32m1 timer driver to use 'DT_' prefixed defines instead
of deprecated non-prefixed defines.
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
Add a level 2 interrupt controller for the RV32M1 SoC. This uses the
INTMUX peripheral.
As a first customer, convert the timer driver over to using this,
adding nodes for the LPTMR peripherals. This lets users select the
timer instance they want to use, and what intmux channel they want to
route its interrupt to, using DT overlays.
Signed-off-by: Marti Bolivar <marti@foundries.io>
Signed-off-by: Mike Scott <mike@foundries.io>
The OpenISA RV32M1 SoC has four CPU cores. Two of these are RISC-V
32-bit cores, which are named "RI5CY" and "ZERO-RISCY". (The other two
cores are ARM Cortex-M0+ and -M4.) This patch adds basic SoC
enablement for the RISC-V cores:
- basic dtsi, to be extended as additional drivers are added
- SoC definition in soc/riscv32/openisa_rv32m1 for RI5CY / ZERO-RISCY
- system timer driver for RI5CY, based on LPTMR0 peripheral
The timer driver will be generalized a bit soon once proper
multi-level interrupt support is available.
Emphasis is on supporting the RI5CY core as the more capable of the
two; the ZERO-RISCY SoC definitions are a good starting point, but
additional work setting up a dtsi and initial drivers is needed to
support that core.
Signed-off-by: Marti Bolivar <marti@foundries.io>
Signed-off-by: Michael Scott <mike@foundries.io>