/* * Copyright (c) 2020 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #define DT_DRV_COMPAT intel_adsp_timer /** * @file * @brief Intel Audio DSP Wall Clock Timer driver * * The Audio DSP on Intel SoC has a timer with one counter and two compare * registers that is external to the CPUs. This timer is accessible from * all available CPU cores and provides a synchronized timer under SMP. */ #define COMPARATOR_IDX 0 /* 0 or 1 */ #ifdef CONFIG_SOC_SERIES_INTEL_ADSP_ACE #define TIMER_IRQ ACE_IRQ_TO_ZEPHYR(ACE_INTL_TTS) #else #define TIMER_IRQ DSP_WCT_IRQ(COMPARATOR_IDX) #endif #define CYC_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #define MAX_CYC 0xFFFFFFFFUL #define MAX_TICKS ((MAX_CYC - CYC_PER_TICK) / CYC_PER_TICK) #define MIN_DELAY (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / 100000) BUILD_ASSERT(MIN_DELAY < CYC_PER_TICK); BUILD_ASSERT(COMPARATOR_IDX >= 0 && COMPARATOR_IDX <= 1); #define DSP_WCT_CS_TT(x) BIT(4 + x) static struct k_spinlock lock; static uint64_t last_count; /* Not using current syscon driver due to overhead due to MMU support */ #define SYSCON_REG_ADDR DT_REG_ADDR(DT_INST_PHANDLE(0, syscon)) #define DSPWCTCS_ADDR (SYSCON_REG_ADDR + ADSP_DSPWCTCS_OFFSET) #define DSPWCT0C_LO_ADDR (SYSCON_REG_ADDR + ADSP_DSPWCT0C_OFFSET) #define DSPWCT0C_HI_ADDR (SYSCON_REG_ADDR + ADSP_DSPWCT0C_OFFSET + 4) #define DSPWC_LO_ADDR (SYSCON_REG_ADDR + ADSP_DSPWC_OFFSET) #define DSPWC_HI_ADDR (SYSCON_REG_ADDR + ADSP_DSPWC_OFFSET + 4) #if defined(CONFIG_TEST) const int32_t z_sys_timer_irq_for_test = TIMER_IRQ; /* See tests/kernel/context */ #endif static void set_compare(uint64_t time) { /* Disarm the comparator to prevent spurious triggers */ sys_write32(sys_read32(DSPWCTCS_ADDR) & (~DSP_WCT_CS_TA(COMPARATOR_IDX)), SYSCON_REG_ADDR + ADSP_DSPWCTCS_OFFSET); sys_write32((uint32_t)time, DSPWCT0C_LO_ADDR); sys_write32((uint32_t)(time >> 32), DSPWCT0C_HI_ADDR); /* Arm the timer */ sys_write32(sys_read32(DSPWCTCS_ADDR) | (DSP_WCT_CS_TA(COMPARATOR_IDX)), DSPWCTCS_ADDR); } static uint64_t count(void) { /* The count register is 64 bits, but we're a 32 bit CPU that * can only read four bytes at a time, so a bit of care is * needed to prevent racing against a wraparound of the low * word. Wrap the low read between two reads of the high word * and make sure it didn't change. */ uint32_t hi0, hi1, lo; do { hi0 = sys_read32(DSPWC_HI_ADDR); lo = sys_read32(DSPWC_LO_ADDR); hi1 = sys_read32(DSPWC_HI_ADDR); } while (hi0 != hi1); return (((uint64_t)hi0) << 32) | lo; } static uint32_t count32(void) { uint32_t counter_lo; counter_lo = sys_read32(DSPWC_LO_ADDR); return counter_lo; } static void compare_isr(const void *arg) { ARG_UNUSED(arg); uint64_t curr; uint64_t dticks; k_spinlock_key_t key = k_spin_lock(&lock); curr = count(); dticks = (curr - last_count) / CYC_PER_TICK; /* Clear the triggered bit */ sys_write32(sys_read32(DSPWCTCS_ADDR) | DSP_WCT_CS_TT(COMPARATOR_IDX), DSPWCTCS_ADDR); last_count += dticks * CYC_PER_TICK; #ifndef CONFIG_TICKLESS_KERNEL uint64_t next = last_count + CYC_PER_TICK; if ((int64_t)(next - curr) < MIN_DELAY) { next += CYC_PER_TICK; } set_compare(next); #endif k_spin_unlock(&lock, key); sys_clock_announce((int32_t)dticks); } void sys_clock_set_timeout(int32_t ticks, bool idle) { ARG_UNUSED(idle); #ifdef CONFIG_TICKLESS_KERNEL ticks = ticks == K_TICKS_FOREVER ? MAX_TICKS : ticks; ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS); k_spinlock_key_t key = k_spin_lock(&lock); uint64_t curr = count(); uint64_t next; uint32_t adj, cyc = ticks * CYC_PER_TICK; /* Round up to next tick boundary */ adj = (uint32_t)(curr - last_count) + (CYC_PER_TICK - 1); if (cyc <= MAX_CYC - adj) { cyc += adj; } else { cyc = MAX_CYC; } cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK; next = last_count + cyc; if (((uint32_t)next - (uint32_t)curr) < MIN_DELAY) { next += CYC_PER_TICK; } set_compare(next); k_spin_unlock(&lock, key); #endif } uint32_t sys_clock_elapsed(void) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return 0; } k_spinlock_key_t key = k_spin_lock(&lock); uint64_t ret = (count() - last_count) / CYC_PER_TICK; k_spin_unlock(&lock, key); return (uint32_t)ret; } uint32_t sys_clock_cycle_get_32(void) { return count32(); } uint64_t sys_clock_cycle_get_64(void) { return count(); } /* Interrupt setup is partially-cpu-local state, so needs to be * repeated for each core when it starts. Note that this conforms to * the Zephyr convention of sending timer interrupts to all cpus (for * the benefit of timeslicing). */ static void irq_init(void) { int cpu = arch_curr_cpu()->id; /* These platforms have an extra layer of interrupt masking * (for per-core control) above the interrupt controller. * Drivers need to do that part. */ #ifdef CONFIG_SOC_SERIES_INTEL_ADSP_ACE ACE_DINT[cpu].ie[ACE_INTL_TTS] |= BIT(COMPARATOR_IDX + 1); sys_write32(sys_read32(DSPWCTCS_ADDR) | ADSP_SHIM_DSPWCTCS_TTIE(COMPARATOR_IDX), DSPWCTCS_ADDR); #else CAVS_INTCTRL[cpu].l2.clear = CAVS_L2_DWCT0; #endif irq_enable(TIMER_IRQ); } void smp_timer_init(void) { } /* Runs on core 0 only */ static int sys_clock_driver_init(void) { uint64_t curr = count(); IRQ_CONNECT(TIMER_IRQ, 0, compare_isr, 0, 0); set_compare(curr + CYC_PER_TICK); last_count = curr; irq_init(); return 0; } #ifdef CONFIG_PM void sys_clock_idle_exit(void) { sys_clock_driver_init(); } #endif SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);