/* * Copyright (c) 2018 Linaro Limited * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief File descriptor table * * This file provides generic file descriptor table implementation, suitable * for any I/O object implementing POSIX I/O semantics (i.e. read/write + * aux operations). */ #include #include #include #include #include #include #include #include struct fd_entry { void *obj; const struct fd_op_vtable *vtable; atomic_t refcount; struct k_mutex lock; struct k_condvar cond; }; #ifdef CONFIG_POSIX_API static const struct fd_op_vtable stdinout_fd_op_vtable; #endif static struct fd_entry fdtable[CONFIG_POSIX_MAX_FDS] = { #ifdef CONFIG_POSIX_API /* * Predefine entries for stdin/stdout/stderr. */ { /* STDIN */ .vtable = &stdinout_fd_op_vtable, .refcount = ATOMIC_INIT(1), .lock = Z_MUTEX_INITIALIZER(fdtable[0].lock), .cond = Z_CONDVAR_INITIALIZER(fdtable[0].cond), }, { /* STDOUT */ .vtable = &stdinout_fd_op_vtable, .refcount = ATOMIC_INIT(1), .lock = Z_MUTEX_INITIALIZER(fdtable[1].lock), .cond = Z_CONDVAR_INITIALIZER(fdtable[1].cond), }, { /* STDERR */ .vtable = &stdinout_fd_op_vtable, .refcount = ATOMIC_INIT(1), .lock = Z_MUTEX_INITIALIZER(fdtable[2].lock), .cond = Z_CONDVAR_INITIALIZER(fdtable[2].cond), }, #else { 0 }, #endif }; static K_MUTEX_DEFINE(fdtable_lock); static int z_fd_ref(int fd) { return atomic_inc(&fdtable[fd].refcount) + 1; } static int z_fd_unref(int fd) { atomic_val_t old_rc; /* Reference counter must be checked to avoid decrement refcount below * zero causing file descriptor leak. Loop statement below executes * atomic decrement if refcount value is grater than zero. Otherwise, * refcount is not going to be written. */ do { old_rc = atomic_get(&fdtable[fd].refcount); if (!old_rc) { return 0; } } while (!atomic_cas(&fdtable[fd].refcount, old_rc, old_rc - 1)); if (old_rc != 1) { return old_rc - 1; } fdtable[fd].obj = NULL; fdtable[fd].vtable = NULL; return 0; } static int _find_fd_entry(void) { int fd; for (fd = 0; fd < ARRAY_SIZE(fdtable); fd++) { if (!atomic_get(&fdtable[fd].refcount)) { return fd; } } errno = ENFILE; return -1; } static int _check_fd(int fd) { if (fd < 0 || fd >= ARRAY_SIZE(fdtable)) { errno = EBADF; return -1; } fd = k_array_index_sanitize(fd, ARRAY_SIZE(fdtable)); if (!atomic_get(&fdtable[fd].refcount)) { errno = EBADF; return -1; } return 0; } #ifdef CONFIG_ZTEST bool fdtable_fd_is_initialized(int fd) { struct k_mutex ref_lock; struct k_condvar ref_cond; if (fd < 0 || fd >= ARRAY_SIZE(fdtable)) { return false; } ref_lock = (struct k_mutex)Z_MUTEX_INITIALIZER(fdtable[fd].lock); if (memcmp(&ref_lock, &fdtable[fd].lock, sizeof(ref_lock)) != 0) { return false; } ref_cond = (struct k_condvar)Z_CONDVAR_INITIALIZER(fdtable[fd].cond); if (memcmp(&ref_cond, &fdtable[fd].cond, sizeof(ref_cond)) != 0) { return false; } return true; } #endif /* CONFIG_ZTEST */ void *z_get_fd_obj(int fd, const struct fd_op_vtable *vtable, int err) { struct fd_entry *entry; if (_check_fd(fd) < 0) { return NULL; } entry = &fdtable[fd]; if (vtable != NULL && entry->vtable != vtable) { errno = err; return NULL; } return entry->obj; } static int z_get_fd_by_obj_and_vtable(void *obj, const struct fd_op_vtable *vtable) { int fd; for (fd = 0; fd < ARRAY_SIZE(fdtable); fd++) { if (fdtable[fd].obj == obj && fdtable[fd].vtable == vtable) { return fd; } } errno = ENFILE; return -1; } bool z_get_obj_lock_and_cond(void *obj, const struct fd_op_vtable *vtable, struct k_mutex **lock, struct k_condvar **cond) { int fd; struct fd_entry *entry; fd = z_get_fd_by_obj_and_vtable(obj, vtable); if (_check_fd(fd) < 0) { return false; } entry = &fdtable[fd]; if (lock) { *lock = &entry->lock; } if (cond) { *cond = &entry->cond; } return true; } void *z_get_fd_obj_and_vtable(int fd, const struct fd_op_vtable **vtable, struct k_mutex **lock) { struct fd_entry *entry; if (_check_fd(fd) < 0) { return NULL; } entry = &fdtable[fd]; *vtable = entry->vtable; if (lock) { *lock = &entry->lock; } return entry->obj; } int z_reserve_fd(void) { int fd; (void)k_mutex_lock(&fdtable_lock, K_FOREVER); fd = _find_fd_entry(); if (fd >= 0) { /* Mark entry as used, z_finalize_fd() will fill it in. */ (void)z_fd_ref(fd); fdtable[fd].obj = NULL; fdtable[fd].vtable = NULL; k_mutex_init(&fdtable[fd].lock); k_condvar_init(&fdtable[fd].cond); } k_mutex_unlock(&fdtable_lock); return fd; } void z_finalize_fd(int fd, void *obj, const struct fd_op_vtable *vtable) { /* Assumes fd was already bounds-checked. */ #ifdef CONFIG_USERSPACE /* descriptor context objects are inserted into the table when they * are ready for use. Mark the object as initialized and grant the * caller (and only the caller) access. * * This call is a no-op if obj is invalid or points to something * not a kernel object. */ k_object_recycle(obj); #endif fdtable[fd].obj = obj; fdtable[fd].vtable = vtable; /* Let the object know about the lock just in case it needs it * for something. For BSD sockets, the lock is used with condition * variables to avoid keeping the lock for a long period of time. */ if (vtable && vtable->ioctl) { (void)z_fdtable_call_ioctl(vtable, obj, ZFD_IOCTL_SET_LOCK, &fdtable[fd].lock); } } void z_free_fd(int fd) { /* Assumes fd was already bounds-checked. */ (void)z_fd_unref(fd); } int z_alloc_fd(void *obj, const struct fd_op_vtable *vtable) { int fd; fd = z_reserve_fd(); if (fd >= 0) { z_finalize_fd(fd, obj, vtable); } return fd; } #ifdef CONFIG_POSIX_API ssize_t read(int fd, void *buf, size_t sz) { ssize_t res; if (_check_fd(fd) < 0) { return -1; } (void)k_mutex_lock(&fdtable[fd].lock, K_FOREVER); res = fdtable[fd].vtable->read(fdtable[fd].obj, buf, sz); k_mutex_unlock(&fdtable[fd].lock); return res; } FUNC_ALIAS(read, _read, ssize_t); ssize_t write(int fd, const void *buf, size_t sz) { ssize_t res; if (_check_fd(fd) < 0) { return -1; } (void)k_mutex_lock(&fdtable[fd].lock, K_FOREVER); res = fdtable[fd].vtable->write(fdtable[fd].obj, buf, sz); k_mutex_unlock(&fdtable[fd].lock); return res; } FUNC_ALIAS(write, _write, ssize_t); int close(int fd) { int res; if (_check_fd(fd) < 0) { return -1; } (void)k_mutex_lock(&fdtable[fd].lock, K_FOREVER); res = fdtable[fd].vtable->close(fdtable[fd].obj); k_mutex_unlock(&fdtable[fd].lock); z_free_fd(fd); return res; } FUNC_ALIAS(close, _close, int); int fsync(int fd) { if (_check_fd(fd) < 0) { return -1; } return z_fdtable_call_ioctl(fdtable[fd].vtable, fdtable[fd].obj, ZFD_IOCTL_FSYNC); } FUNC_ALIAS(fsync, _fsync, int); off_t lseek(int fd, off_t offset, int whence) { if (_check_fd(fd) < 0) { return -1; } return z_fdtable_call_ioctl(fdtable[fd].vtable, fdtable[fd].obj, ZFD_IOCTL_LSEEK, offset, whence); } FUNC_ALIAS(lseek, _lseek, off_t); int ioctl(int fd, unsigned long request, ...) { va_list args; int res; if (_check_fd(fd) < 0) { return -1; } va_start(args, request); res = fdtable[fd].vtable->ioctl(fdtable[fd].obj, request, args); va_end(args); return res; } int fcntl(int fd, int cmd, ...) { va_list args; int res; if (_check_fd(fd) < 0) { return -1; } /* Handle fdtable commands. */ if (cmd == F_DUPFD) { /* Not implemented so far. */ errno = EINVAL; return -1; } /* The rest of commands are per-fd, handled by ioctl vmethod. */ va_start(args, cmd); res = fdtable[fd].vtable->ioctl(fdtable[fd].obj, cmd, args); va_end(args); return res; } /* * fd operations for stdio/stdout/stderr */ int z_impl_zephyr_write_stdout(const char *buf, int nbytes); static ssize_t stdinout_read_vmeth(void *obj, void *buffer, size_t count) { return 0; } static ssize_t stdinout_write_vmeth(void *obj, const void *buffer, size_t count) { #if defined(CONFIG_BOARD_NATIVE_POSIX) return write(1, buffer, count); #elif defined(CONFIG_NEWLIB_LIBC) || defined(CONFIG_ARCMWDT_LIBC) return z_impl_zephyr_write_stdout(buffer, count); #else return 0; #endif } static int stdinout_ioctl_vmeth(void *obj, unsigned int request, va_list args) { errno = EINVAL; return -1; } static const struct fd_op_vtable stdinout_fd_op_vtable = { .read = stdinout_read_vmeth, .write = stdinout_write_vmeth, .ioctl = stdinout_ioctl_vmeth, }; #endif /* CONFIG_POSIX_API */