/* * Copyright (c) 2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * * @brief Pipes */ #include #include #include #include #include #include #include #include #include struct k_pipe_desc { unsigned char *buffer; /* Position in src/dest buffer */ size_t bytes_to_xfer; /* # bytes left to transfer */ }; static int pipe_get_internal(k_spinlock_key_t key, struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout); void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size) { pipe->buffer = buffer; pipe->size = size; pipe->bytes_used = 0; pipe->read_index = 0; pipe->write_index = 0; pipe->lock = (struct k_spinlock){}; z_waitq_init(&pipe->wait_q.writers); z_waitq_init(&pipe->wait_q.readers); SYS_PORT_TRACING_OBJ_INIT(k_pipe, pipe); pipe->flags = 0; z_object_init(pipe); } int z_impl_k_pipe_alloc_init(struct k_pipe *pipe, size_t size) { void *buffer; int ret; SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, alloc_init, pipe); if (size != 0U) { buffer = z_thread_malloc(size); if (buffer != NULL) { k_pipe_init(pipe, buffer, size); pipe->flags = K_PIPE_FLAG_ALLOC; ret = 0; } else { ret = -ENOMEM; } } else { k_pipe_init(pipe, NULL, 0); ret = 0; } SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, alloc_init, pipe, ret); return ret; } #ifdef CONFIG_USERSPACE static inline int z_vrfy_k_pipe_alloc_init(struct k_pipe *pipe, size_t size) { Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(pipe, K_OBJ_PIPE)); return z_impl_k_pipe_alloc_init(pipe, size); } #include #endif void z_impl_k_pipe_flush(struct k_pipe *pipe) { size_t bytes_read; SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, flush, pipe); k_spinlock_key_t key = k_spin_lock(&pipe->lock); (void) pipe_get_internal(key, pipe, NULL, (size_t) -1, &bytes_read, 0, K_NO_WAIT); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, flush, pipe); } #ifdef CONFIG_USERSPACE void z_vrfy_k_pipe_flush(struct k_pipe *pipe) { Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE)); z_impl_k_pipe_flush(pipe); } #include #endif void z_impl_k_pipe_buffer_flush(struct k_pipe *pipe) { size_t bytes_read; SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, buffer_flush, pipe); k_spinlock_key_t key = k_spin_lock(&pipe->lock); if (pipe->buffer != NULL) { (void) pipe_get_internal(key, pipe, NULL, pipe->size, &bytes_read, 0, K_NO_WAIT); } SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, buffer_flush, pipe); } #ifdef CONFIG_USERSPACE void z_vrfy_k_pipe_buffer_flush(struct k_pipe *pipe) { Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE)); z_impl_k_pipe_buffer_flush(pipe); } #endif int k_pipe_cleanup(struct k_pipe *pipe) { SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, cleanup, pipe); k_spinlock_key_t key = k_spin_lock(&pipe->lock); CHECKIF(z_waitq_head(&pipe->wait_q.readers) != NULL || z_waitq_head(&pipe->wait_q.writers) != NULL) { k_spin_unlock(&pipe->lock, key); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, cleanup, pipe, -EAGAIN); return -EAGAIN; } if ((pipe->flags & K_PIPE_FLAG_ALLOC) != 0U) { k_free(pipe->buffer); pipe->buffer = NULL; /* * Freeing the buffer changes the pipe into a bufferless * pipe. Reset the pipe's counters to prevent malfunction. */ pipe->size = 0; pipe->bytes_used = 0; pipe->read_index = 0; pipe->write_index = 0; pipe->flags &= ~K_PIPE_FLAG_ALLOC; } k_spin_unlock(&pipe->lock, key); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, cleanup, pipe, 0); return 0; } /** * @brief Copy bytes from @a src to @a dest * * @return Number of bytes copied */ static size_t pipe_xfer(unsigned char *dest, size_t dest_size, const unsigned char *src, size_t src_size) { size_t num_bytes = MIN(dest_size, src_size); const unsigned char *end = src + num_bytes; if (dest == NULL) { /* Data is being flushed. Pretend the data was copied. */ return num_bytes; } while (src != end) { *dest = *src; dest++; src++; } return num_bytes; } /** * @brief Put data from @a src into the pipe's circular buffer * * Modifies the following fields in @a pipe: * buffer, bytes_used, write_index * * @return Number of bytes written to the pipe's circular buffer */ static size_t pipe_buffer_put(struct k_pipe *pipe, const unsigned char *src, size_t src_size) { size_t bytes_copied; size_t run_length; size_t num_bytes_written = 0; int i; for (i = 0; i < 2; i++) { run_length = MIN(pipe->size - pipe->bytes_used, pipe->size - pipe->write_index); bytes_copied = pipe_xfer(pipe->buffer + pipe->write_index, run_length, src + num_bytes_written, src_size - num_bytes_written); num_bytes_written += bytes_copied; pipe->bytes_used += bytes_copied; pipe->write_index += bytes_copied; if (pipe->write_index == pipe->size) { pipe->write_index = 0; } } return num_bytes_written; } /** * @brief Get data from the pipe's circular buffer * * Modifies the following fields in @a pipe: * bytes_used, read_index * * @return Number of bytes read from the pipe's circular buffer */ static size_t pipe_buffer_get(struct k_pipe *pipe, unsigned char *dest, size_t dest_size) { size_t bytes_copied; size_t run_length; size_t num_bytes_read = 0; size_t dest_off; int i; for (i = 0; i < 2; i++) { run_length = MIN(pipe->bytes_used, pipe->size - pipe->read_index); dest_off = (dest == NULL) ? 0 : num_bytes_read; bytes_copied = pipe_xfer(dest + dest_off, dest_size - num_bytes_read, pipe->buffer + pipe->read_index, run_length); num_bytes_read += bytes_copied; pipe->bytes_used -= bytes_copied; pipe->read_index += bytes_copied; if (pipe->read_index == pipe->size) { pipe->read_index = 0; } } return num_bytes_read; } /** * @brief Prepare a working set of readers/writers * * Prepare a list of "working threads" into/from which the data * will be directly copied. This list is useful as it is used to ... * * 1. avoid double copying * 2. minimize interrupt latency as interrupts are unlocked * while copying data * 3. ensure a timeout can not make the request impossible to satisfy * * The list is populated with previously pended threads that will be ready to * run after the pipe call is complete. * * Important things to remember when reading from the pipe ... * 1. If there are writers int @a wait_q, then the pipe's buffer is full. * 2. Conversely if the pipe's buffer is not full, there are no writers. * 3. The amount of available data in the pipe is the sum the bytes used in * the pipe (@a pipe_space) and all the requests from the waiting writers. * 4. Since data is read from the pipe's buffer first, the working set must * include writers that will (try to) re-fill the pipe's buffer afterwards. * * Important things to remember when writing to the pipe ... * 1. If there are readers in @a wait_q, then the pipe's buffer is empty. * 2. Conversely if the pipe's buffer is not empty, then there are no readers. * 3. The amount of space available in the pipe is the sum of the bytes unused * in the pipe (@a pipe_space) and all the requests from the waiting readers. * * @return false if request is unsatisfiable, otherwise true */ static bool pipe_xfer_prepare(sys_dlist_t *xfer_list, struct k_thread **waiter, _wait_q_t *wait_q, size_t pipe_space, size_t bytes_to_xfer, size_t min_xfer, k_timeout_t timeout) { struct k_thread *thread; struct k_pipe_desc *desc; size_t num_bytes = 0; if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { _WAIT_Q_FOR_EACH(wait_q, thread) { desc = (struct k_pipe_desc *)thread->base.swap_data; num_bytes += desc->bytes_to_xfer; if (num_bytes >= bytes_to_xfer) { break; } } if (num_bytes + pipe_space < min_xfer) { return false; } } /* * Either @a timeout is not K_NO_WAIT (so the thread may pend) or * the entire request can be satisfied. Generate the working list. */ sys_dlist_init(xfer_list); num_bytes = 0; while ((thread = z_waitq_head(wait_q)) != NULL) { desc = (struct k_pipe_desc *)thread->base.swap_data; num_bytes += desc->bytes_to_xfer; if (num_bytes > bytes_to_xfer) { /* * This request can not be fully satisfied. * Do not remove it from the wait_q. * Do not abort its timeout (if applicable). * Do not add it to the transfer list */ break; } /* * This request can be fully satisfied. * Remove it from the wait_q. * Abort its timeout. * Add it to the transfer list. */ z_unpend_thread(thread); sys_dlist_append(xfer_list, &thread->base.qnode_dlist); } *waiter = (num_bytes > bytes_to_xfer) ? thread : NULL; return true; } /** * @brief Determine the correct return code * * Bytes Xferred No Wait Wait * >= Minimum 0 0 * < Minimum -EIO* -EAGAIN * * * The "-EIO No Wait" case was already checked when the "working set" * was created in _pipe_xfer_prepare(). * * @return See table above */ static int pipe_return_code(size_t min_xfer, size_t bytes_remaining, size_t bytes_requested) { if (bytes_requested - bytes_remaining >= min_xfer) { /* * At least the minimum number of requested * bytes have been transferred. */ return 0; } return -EAGAIN; } int z_impl_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout) { struct k_thread *reader; struct k_pipe_desc *desc; sys_dlist_t xfer_list; size_t num_bytes_written = 0; size_t bytes_copied; SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, put, pipe, timeout); CHECKIF((min_xfer > bytes_to_write) || bytes_written == NULL) { SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, -EINVAL); return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&pipe->lock); /* * Create a list of "working readers" into which the data will be * directly copied. */ if (!pipe_xfer_prepare(&xfer_list, &reader, &pipe->wait_q.readers, pipe->size - pipe->bytes_used, bytes_to_write, min_xfer, timeout)) { k_spin_unlock(&pipe->lock, key); *bytes_written = 0; SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, -EIO); return -EIO; } SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_pipe, put, pipe, timeout); z_sched_lock(); k_spin_unlock(&pipe->lock, key); /* * 1. 'xfer_list' currently contains a list of reader threads that can * have their read requests fulfilled by the current call. * 2. 'reader' if not NULL points to a thread on the reader wait_q * that can get some of its requested data. * 3. Interrupts are unlocked but the scheduler is locked to allow * ticks to be delivered but no scheduling to occur * 4. If 'reader' times out while we are copying data, not only do we * still have a pointer to it, but it can not execute until this call * is complete so it is still safe to copy data to it. */ struct k_thread *thread = (struct k_thread *) sys_dlist_get(&xfer_list); while (thread != NULL) { desc = (struct k_pipe_desc *)thread->base.swap_data; bytes_copied = pipe_xfer(desc->buffer, desc->bytes_to_xfer, (uint8_t *)data + num_bytes_written, bytes_to_write - num_bytes_written); num_bytes_written += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; /* The thread's read request has been satisfied. Ready it. */ z_ready_thread(thread); thread = (struct k_thread *)sys_dlist_get(&xfer_list); } /* * Copy any data to the reader that we left on the wait_q. * It is possible no data will be copied. */ if (reader != NULL) { desc = (struct k_pipe_desc *)reader->base.swap_data; bytes_copied = pipe_xfer(desc->buffer, desc->bytes_to_xfer, (uint8_t *)data + num_bytes_written, bytes_to_write - num_bytes_written); num_bytes_written += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; } /* * As much data as possible has been directly copied to any waiting * readers. Add as much as possible to the pipe's circular buffer. */ num_bytes_written += pipe_buffer_put(pipe, (uint8_t *)data + num_bytes_written, bytes_to_write - num_bytes_written); if (num_bytes_written == bytes_to_write) { *bytes_written = num_bytes_written; k_sched_unlock(); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, 0); return 0; } if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT) && num_bytes_written >= min_xfer && min_xfer > 0U) { *bytes_written = num_bytes_written; k_sched_unlock(); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, 0); return 0; } /* Not all data was copied */ struct k_pipe_desc pipe_desc; pipe_desc.buffer = (uint8_t *)data + num_bytes_written; pipe_desc.bytes_to_xfer = bytes_to_write - num_bytes_written; if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { _current->base.swap_data = &pipe_desc; /* * Lock interrupts and unlock the scheduler before * manipulating the writers wait_q. */ k_spinlock_key_t key2 = k_spin_lock(&pipe->lock); z_sched_unlock_no_reschedule(); (void)z_pend_curr(&pipe->lock, key2, &pipe->wait_q.writers, timeout); } else { k_sched_unlock(); } *bytes_written = bytes_to_write - pipe_desc.bytes_to_xfer; int ret = pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer, bytes_to_write); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, ret); return ret; } #ifdef CONFIG_USERSPACE int z_vrfy_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout) { Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE)); Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_written, sizeof(*bytes_written))); Z_OOPS(Z_SYSCALL_MEMORY_READ((void *)data, bytes_to_write)); return z_impl_k_pipe_put((struct k_pipe *)pipe, (void *)data, bytes_to_write, bytes_written, min_xfer, timeout); } #include #endif static int pipe_get_internal(k_spinlock_key_t key, struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout) { struct k_thread *writer; struct k_pipe_desc *desc; sys_dlist_t xfer_list; size_t num_bytes_read = 0; size_t data_off; size_t bytes_copied; /* * Create a list of "working readers" into which the data will be * directly copied. */ if (!pipe_xfer_prepare(&xfer_list, &writer, &pipe->wait_q.writers, pipe->bytes_used, bytes_to_read, min_xfer, timeout)) { k_spin_unlock(&pipe->lock, key); *bytes_read = 0; return -EIO; } z_sched_lock(); k_spin_unlock(&pipe->lock, key); num_bytes_read = pipe_buffer_get(pipe, data, bytes_to_read); /* * 1. 'xfer_list' currently contains a list of writer threads that can * have their write requests fulfilled by the current call. * 2. 'writer' if not NULL points to a thread on the writer wait_q * that can post some of its requested data. * 3. Data will be copied from each writer's buffer to either the * reader's buffer and/or to the pipe's circular buffer. * 4. Interrupts are unlocked but the scheduler is locked to allow * ticks to be delivered but no scheduling to occur * 5. If 'writer' times out while we are copying data, not only do we * still have a pointer to it, but it can not execute until this * call is complete so it is still safe to copy data from it. */ struct k_thread *thread = (struct k_thread *) sys_dlist_get(&xfer_list); while ((thread != NULL) && (num_bytes_read < bytes_to_read)) { desc = (struct k_pipe_desc *)thread->base.swap_data; data_off = (data == NULL) ? 0 : num_bytes_read; bytes_copied = pipe_xfer((uint8_t *)data + data_off, bytes_to_read - num_bytes_read, desc->buffer, desc->bytes_to_xfer); num_bytes_read += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; /* * It is expected that the write request will be satisfied. * However, if the read request was satisfied before the * write request was satisfied, then the write request must * finish later when writing to the pipe's circular buffer. */ if (num_bytes_read == bytes_to_read) { break; } z_ready_thread(thread); thread = (struct k_thread *)sys_dlist_get(&xfer_list); } if ((writer != NULL) && (num_bytes_read < bytes_to_read)) { desc = (struct k_pipe_desc *)writer->base.swap_data; data_off = (data == NULL) ? 0 : num_bytes_read; bytes_copied = pipe_xfer((uint8_t *)data + data_off, bytes_to_read - num_bytes_read, desc->buffer, desc->bytes_to_xfer); num_bytes_read += bytes_copied; desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; } /* * Copy as much data as possible from the writers (if any) * into the pipe's circular buffer. */ while (thread != NULL) { desc = (struct k_pipe_desc *)thread->base.swap_data; bytes_copied = pipe_buffer_put(pipe, desc->buffer, desc->bytes_to_xfer); desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; /* Write request has been satisfied */ z_ready_thread(thread); thread = (struct k_thread *)sys_dlist_get(&xfer_list); } if (writer != NULL) { desc = (struct k_pipe_desc *)writer->base.swap_data; bytes_copied = pipe_buffer_put(pipe, desc->buffer, desc->bytes_to_xfer); desc->buffer += bytes_copied; desc->bytes_to_xfer -= bytes_copied; } if (num_bytes_read == bytes_to_read) { k_sched_unlock(); *bytes_read = num_bytes_read; return 0; } if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT) && num_bytes_read >= min_xfer && min_xfer > 0U) { k_sched_unlock(); *bytes_read = num_bytes_read; return 0; } /* * Not all data was read. It is important to note that when this * routine is invoked by either of the flush routines() both the * and parameters are set to NULL and K_NO_WAIT respectively. * Consequently, neither k_pipe_flush() nor k_pipe_buffer_flush() * will block. * * However, this routine may also be invoked by k_pipe_get() and there * is no enforcement of being non-NULL when called from * kernel-space. That restriction is enforced when called from * user-space. */ struct k_pipe_desc pipe_desc; pipe_desc.buffer = (uint8_t *)data + num_bytes_read; pipe_desc.bytes_to_xfer = bytes_to_read - num_bytes_read; if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_pipe, get, pipe, timeout); _current->base.swap_data = &pipe_desc; k_spinlock_key_t key2 = k_spin_lock(&pipe->lock); z_sched_unlock_no_reschedule(); (void)z_pend_curr(&pipe->lock, key2, &pipe->wait_q.readers, timeout); } else { k_sched_unlock(); } *bytes_read = bytes_to_read - pipe_desc.bytes_to_xfer; int ret = pipe_return_code(min_xfer, pipe_desc.bytes_to_xfer, bytes_to_read); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe, timeout, ret); return ret; } int z_impl_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout) { SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, get, pipe, timeout); CHECKIF((min_xfer > bytes_to_read) || bytes_read == NULL) { SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe, timeout, -EINVAL); return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&pipe->lock); int ret = pipe_get_internal(key, pipe, data, bytes_to_read, bytes_read, min_xfer, timeout); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe, timeout, ret); return ret; } #ifdef CONFIG_USERSPACE int z_vrfy_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout) { Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE)); Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_read, sizeof(*bytes_read))); Z_OOPS(Z_SYSCALL_MEMORY_WRITE((void *)data, bytes_to_read)); return z_impl_k_pipe_get((struct k_pipe *)pipe, (void *)data, bytes_to_read, bytes_read, min_xfer, timeout); } #include #endif size_t z_impl_k_pipe_read_avail(struct k_pipe *pipe) { size_t res; k_spinlock_key_t key; /* Buffer and size are fixed. No need to spin. */ if (pipe->buffer == NULL || pipe->size == 0U) { res = 0; goto out; } key = k_spin_lock(&pipe->lock); if (pipe->read_index == pipe->write_index) { res = pipe->bytes_used; } else if (pipe->read_index < pipe->write_index) { res = pipe->write_index - pipe->read_index; } else { res = pipe->size - (pipe->read_index - pipe->write_index); } k_spin_unlock(&pipe->lock, key); out: return res; } #ifdef CONFIG_USERSPACE size_t z_vrfy_k_pipe_read_avail(struct k_pipe *pipe) { Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE)); return z_impl_k_pipe_read_avail(pipe); } #include #endif size_t z_impl_k_pipe_write_avail(struct k_pipe *pipe) { size_t res; k_spinlock_key_t key; /* Buffer and size are fixed. No need to spin. */ if (pipe->buffer == NULL || pipe->size == 0U) { res = 0; goto out; } key = k_spin_lock(&pipe->lock); if (pipe->write_index == pipe->read_index) { res = pipe->size - pipe->bytes_used; } else if (pipe->write_index < pipe->read_index) { res = pipe->read_index - pipe->write_index; } else { res = pipe->size - (pipe->write_index - pipe->read_index); } k_spin_unlock(&pipe->lock, key); out: return res; } #ifdef CONFIG_USERSPACE size_t z_vrfy_k_pipe_write_avail(struct k_pipe *pipe) { Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE)); return z_impl_k_pipe_write_avail(pipe); } #include #endif