/* * Copyright 2021 BayLibre, SAS * * SPDX-License-Identifier: Apache-2.0 */ #include LOG_MODULE_REGISTER(intc_gicv3_its, LOG_LEVEL_ERR); #include #include #include #include #include "intc_gic_common_priv.h" #include "intc_gicv3_priv.h" #define DT_DRV_COMPAT arm_gic_v3_its /* * Current ITS implementation only handle GICv3 ITS physical interruption generation * Implementation is designed for the PCIe MSI/MSI-X use-case in mind. */ #define GITS_BASER_NR_REGS 8 /* convenient access to all redistributors base address */ extern mem_addr_t gic_rdists[CONFIG_MP_MAX_NUM_CPUS]; #define SIZE_256 256 #define SIZE_4K KB(4) #define SIZE_16K KB(16) #define SIZE_64K KB(64) struct its_cmd_block { uint64_t raw_cmd[4]; }; #define ITS_CMD_QUEUE_SIZE SIZE_64K #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SIZE / sizeof(struct its_cmd_block)) struct gicv3_its_data { mm_reg_t base; struct its_cmd_block *cmd_base; struct its_cmd_block *cmd_write; bool dev_table_is_indirect; uint64_t *indirect_dev_lvl1_table; size_t indirect_dev_lvl1_width; size_t indirect_dev_lvl2_width; size_t indirect_dev_page_size; }; struct gicv3_its_config { uintptr_t base_addr; size_t base_size; struct its_cmd_block *cmd_queue; size_t cmd_queue_size; }; static inline int fls_z(unsigned int x) { unsigned int bits = sizeof(x) * 8; unsigned int cmp = 1 << (bits - 1); while (bits) { if (x & cmp) { return bits; } cmp >>= 1; bits--; } return 0; } /* wait 500ms & wakeup every millisecond */ #define WAIT_QUIESCENT 500 static int its_force_quiescent(struct gicv3_its_data *data) { unsigned int count = WAIT_QUIESCENT; uint32_t reg = sys_read32(data->base + GITS_CTLR); if (GITS_CTLR_ENABLED_GET(reg)) { /* Disable ITS */ reg &= ~MASK(GITS_CTLR_ENABLED); sys_write32(reg, data->base + GITS_CTLR); } while (1) { if (GITS_CTLR_QUIESCENT_GET(reg)) { return 0; } count--; if (!count) { return -EBUSY; } k_msleep(1); reg = sys_read32(data->base + GITS_CTLR); } return 0; } static const char *const its_base_type_string[] = { [GITS_BASER_TYPE_DEVICE] = "Devices", [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", }; /* Probe the BASER(i) to get the largest supported page size */ static size_t its_probe_baser_page_size(struct gicv3_its_data *data, int i) { uint64_t page_size = GITS_BASER_PAGE_SIZE_64K; while (page_size > GITS_BASER_PAGE_SIZE_4K) { uint64_t reg = sys_read64(data->base + GITS_BASER(i)); reg &= ~MASK(GITS_BASER_PAGE_SIZE); reg |= MASK_SET(page_size, GITS_BASER_PAGE_SIZE); sys_write64(reg, data->base + GITS_BASER(i)); reg = sys_read64(data->base + GITS_BASER(i)); if (MASK_GET(reg, GITS_BASER_PAGE_SIZE) == page_size) { break; } switch (page_size) { case GITS_BASER_PAGE_SIZE_64K: page_size = GITS_BASER_PAGE_SIZE_16K; break; default: page_size = GITS_BASER_PAGE_SIZE_4K; } } switch (page_size) { case GITS_BASER_PAGE_SIZE_64K: return SIZE_64K; case GITS_BASER_PAGE_SIZE_16K: return SIZE_16K; default: return SIZE_4K; } } static int its_alloc_tables(struct gicv3_its_data *data) { unsigned int device_ids = GITS_TYPER_DEVBITS_GET(sys_read64(data->base + GITS_TYPER)) + 1; int i; for (i = 0; i < GITS_BASER_NR_REGS; ++i) { uint64_t reg = sys_read64(data->base + GITS_BASER(i)); unsigned int type = GITS_BASER_TYPE_GET(reg); size_t page_size, entry_size, page_cnt, lvl2_width = 0; bool indirect = false; void *alloc_addr; entry_size = GITS_BASER_ENTRY_SIZE_GET(reg) + 1; switch (GITS_BASER_PAGE_SIZE_GET(reg)) { case GITS_BASER_PAGE_SIZE_4K: page_size = SIZE_4K; break; case GITS_BASER_PAGE_SIZE_16K: page_size = SIZE_16K; break; case GITS_BASER_PAGE_SIZE_64K: page_size = SIZE_64K; break; default: page_size = SIZE_4K; } switch (type) { case GITS_BASER_TYPE_DEVICE: if (device_ids > 16) { /* Use the largest possible page size for indirect */ page_size = its_probe_baser_page_size(data, i); /* * lvl1 table size: * subtract ID bits that sparse lvl2 table from 'ids' * which is reported by ITS hardware times lvl1 table * entry size. */ lvl2_width = fls_z(page_size / entry_size) - 1; device_ids -= lvl2_width + 1; /* The level 1 entry size is a 64bit pointer */ entry_size = sizeof(uint64_t); indirect = true; } page_cnt = ROUND_UP(entry_size << device_ids, page_size) / page_size; break; case GITS_BASER_TYPE_COLLECTION: page_cnt = ROUND_UP(entry_size * CONFIG_MP_MAX_NUM_CPUS, page_size)/page_size; break; default: continue; } LOG_INF("Allocating %s table of %ldx%ldK pages (%ld bytes entry)", its_base_type_string[type], page_cnt, page_size / 1024, entry_size); alloc_addr = k_aligned_alloc(page_size, page_size * page_cnt); if (!alloc_addr) { return -ENOMEM; } memset(alloc_addr, 0, page_size * page_cnt); switch (page_size) { case SIZE_4K: reg = MASK_SET(GITS_BASER_PAGE_SIZE_4K, GITS_BASER_PAGE_SIZE); break; case SIZE_16K: reg = MASK_SET(GITS_BASER_PAGE_SIZE_16K, GITS_BASER_PAGE_SIZE); break; case SIZE_64K: reg = MASK_SET(GITS_BASER_PAGE_SIZE_64K, GITS_BASER_PAGE_SIZE); break; } reg |= MASK_SET(page_cnt - 1, GITS_BASER_SIZE); reg |= MASK_SET(GIC_BASER_SHARE_INNER, GITS_BASER_SHAREABILITY); reg |= MASK_SET((uintptr_t)alloc_addr >> GITS_BASER_ADDR_SHIFT, GITS_BASER_ADDR); reg |= MASK_SET(GIC_BASER_CACHE_INNERLIKE, GITS_BASER_OUTER_CACHE); reg |= MASK_SET(GIC_BASER_CACHE_RAWAWB, GITS_BASER_INNER_CACHE); reg |= MASK_SET(indirect ? 1 : 0, GITS_BASER_INDIRECT); reg |= MASK_SET(1, GITS_BASER_VALID); sys_write64(reg, data->base + GITS_BASER(i)); /* TOFIX: check page size & SHAREABILITY validity after write */ if (type == GITS_BASER_TYPE_DEVICE && indirect) { data->dev_table_is_indirect = indirect; data->indirect_dev_lvl1_table = alloc_addr; data->indirect_dev_lvl1_width = device_ids; data->indirect_dev_lvl2_width = lvl2_width; data->indirect_dev_page_size = page_size; LOG_DBG("%s table Indirection enabled", its_base_type_string[type]); } } return 0; } static bool its_queue_full(struct gicv3_its_data *data) { int widx; int ridx; widx = data->cmd_write - data->cmd_base; ridx = sys_read32(data->base + GITS_CREADR) / sizeof(struct its_cmd_block); /* This is incredibly unlikely to happen, unless the ITS locks up. */ return (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx); } static struct its_cmd_block *its_allocate_entry(struct gicv3_its_data *data) { struct its_cmd_block *cmd; unsigned int count = 1000000; /* 1s! */ while (its_queue_full(data)) { count--; if (!count) { LOG_ERR("ITS queue not draining"); return NULL; } k_usleep(1); } cmd = data->cmd_write++; /* Handle queue wrapping */ if (data->cmd_write == (data->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) { data->cmd_write = data->cmd_base; } /* Clear command */ cmd->raw_cmd[0] = 0; cmd->raw_cmd[1] = 0; cmd->raw_cmd[2] = 0; cmd->raw_cmd[3] = 0; return cmd; } static int its_post_command(struct gicv3_its_data *data, struct its_cmd_block *cmd) { uint64_t wr_idx, rd_idx, idx; unsigned int count = 1000000; /* 1s! */ wr_idx = (data->cmd_write - data->cmd_base) * sizeof(*cmd); rd_idx = sys_read32(data->base + GITS_CREADR); barrier_dsync_fence_full(); sys_write32(wr_idx, data->base + GITS_CWRITER); while (1) { idx = sys_read32(data->base + GITS_CREADR); if (idx == wr_idx) { break; } count--; if (!count) { LOG_ERR("ITS queue timeout (rd %lld => %lld => wr %lld)", rd_idx, idx, wr_idx); return -ETIMEDOUT; } k_usleep(1); } return 0; } static int its_send_sync_cmd(struct gicv3_its_data *data, uintptr_t rd_addr) { struct its_cmd_block *cmd = its_allocate_entry(data); if (!cmd) { return -EBUSY; } cmd->raw_cmd[0] = MASK_SET(GITS_CMD_ID_SYNC, GITS_CMD_ID); cmd->raw_cmd[2] = MASK_SET(rd_addr >> GITS_CMD_RDBASE_ALIGN, GITS_CMD_RDBASE); return its_post_command(data, cmd); } static int its_send_mapc_cmd(struct gicv3_its_data *data, uint32_t icid, uintptr_t rd_addr, bool valid) { struct its_cmd_block *cmd = its_allocate_entry(data); if (!cmd) { return -EBUSY; } cmd->raw_cmd[0] = MASK_SET(GITS_CMD_ID_MAPC, GITS_CMD_ID); cmd->raw_cmd[2] = MASK_SET(icid, GITS_CMD_ICID) | MASK_SET(rd_addr >> GITS_CMD_RDBASE_ALIGN, GITS_CMD_RDBASE) | MASK_SET(valid ? 1 : 0, GITS_CMD_VALID); return its_post_command(data, cmd); } static int its_send_mapd_cmd(struct gicv3_its_data *data, uint32_t device_id, uint32_t size, uintptr_t itt_addr, bool valid) { struct its_cmd_block *cmd = its_allocate_entry(data); if (!cmd) { return -EBUSY; } cmd->raw_cmd[0] = MASK_SET(GITS_CMD_ID_MAPD, GITS_CMD_ID) | MASK_SET(device_id, GITS_CMD_DEVICEID); cmd->raw_cmd[1] = MASK_SET(size, GITS_CMD_SIZE); cmd->raw_cmd[2] = MASK_SET(itt_addr >> GITS_CMD_ITTADDR_ALIGN, GITS_CMD_ITTADDR) | MASK_SET(valid ? 1 : 0, GITS_CMD_VALID); return its_post_command(data, cmd); } static int its_send_mapti_cmd(struct gicv3_its_data *data, uint32_t device_id, uint32_t event_id, uint32_t intid, uint32_t icid) { struct its_cmd_block *cmd = its_allocate_entry(data); if (!cmd) { return -EBUSY; } cmd->raw_cmd[0] = MASK_SET(GITS_CMD_ID_MAPTI, GITS_CMD_ID) | MASK_SET(device_id, GITS_CMD_DEVICEID); cmd->raw_cmd[1] = MASK_SET(event_id, GITS_CMD_EVENTID) | MASK_SET(intid, GITS_CMD_PINTID); cmd->raw_cmd[2] = MASK_SET(icid, GITS_CMD_ICID); return its_post_command(data, cmd); } static int its_send_int_cmd(struct gicv3_its_data *data, uint32_t device_id, uint32_t event_id) { struct its_cmd_block *cmd = its_allocate_entry(data); if (!cmd) { return -EBUSY; } cmd->raw_cmd[0] = MASK_SET(GITS_CMD_ID_INT, GITS_CMD_ID) | MASK_SET(device_id, GITS_CMD_DEVICEID); cmd->raw_cmd[1] = MASK_SET(event_id, GITS_CMD_EVENTID); return its_post_command(data, cmd); } static int its_send_invall_cmd(struct gicv3_its_data *data, uint32_t icid) { struct its_cmd_block *cmd = its_allocate_entry(data); if (!cmd) { return -EBUSY; } cmd->raw_cmd[0] = MASK_SET(GITS_CMD_ID_INVALL, GITS_CMD_ID); cmd->raw_cmd[2] = MASK_SET(icid, GITS_CMD_ICID); return its_post_command(data, cmd); } static int gicv3_its_send_int(const struct device *dev, uint32_t device_id, uint32_t event_id) { struct gicv3_its_data *data = dev->data; /* TOFIX check device_id & event_id bounds */ return its_send_int_cmd(data, device_id, event_id); } static void its_setup_cmd_queue(const struct device *dev) { const struct gicv3_its_config *cfg = dev->config; struct gicv3_its_data *data = dev->data; uint64_t reg = 0; /* Zero out cmd table */ memset(cfg->cmd_queue, 0, cfg->cmd_queue_size); reg |= MASK_SET(cfg->cmd_queue_size / SIZE_4K, GITS_CBASER_SIZE); reg |= MASK_SET(GIC_BASER_SHARE_INNER, GITS_CBASER_SHAREABILITY); reg |= MASK_SET((uintptr_t)cfg->cmd_queue >> GITS_CBASER_ADDR_SHIFT, GITS_CBASER_ADDR); reg |= MASK_SET(GIC_BASER_CACHE_RAWAWB, GITS_CBASER_OUTER_CACHE); reg |= MASK_SET(GIC_BASER_CACHE_RAWAWB, GITS_CBASER_INNER_CACHE); reg |= MASK_SET(1, GITS_CBASER_VALID); sys_write64(reg, data->base + GITS_CBASER); data->cmd_base = (struct its_cmd_block *)cfg->cmd_queue; data->cmd_write = data->cmd_base; LOG_INF("Allocated %ld entries for command table", ITS_CMD_QUEUE_NR_ENTRIES); sys_write64(0, data->base + GITS_CWRITER); } static uintptr_t gicv3_rdist_get_rdbase(const struct device *dev, unsigned int cpuid) { struct gicv3_its_data *data = dev->data; uint64_t typer = sys_read64(data->base + GITS_TYPER); if (GITS_TYPER_PTA_GET(typer)) { return gic_rdists[cpuid]; } else { return GICR_TYPER_PROCESSOR_NUMBER_GET(sys_read64(gic_rdists[cpuid] + GICR_TYPER)); } } static int gicv3_its_map_intid(const struct device *dev, uint32_t device_id, uint32_t event_id, unsigned int intid) { struct gicv3_its_data *data = dev->data; int ret; /* TOFIX check device_id, event_id & intid bounds */ if (intid < 8192) { return -EINVAL; } /* The CPU id directly maps as ICID for the current CPU redistributor */ ret = its_send_mapti_cmd(data, device_id, event_id, intid, arch_curr_cpu()->id); if (ret) { LOG_ERR("Failed to map eventid %d to intid %d for deviceid %x", event_id, intid, device_id); return ret; } return its_send_sync_cmd(data, gicv3_rdist_get_rdbase(dev, arch_curr_cpu()->id)); } static int gicv3_its_init_device_id(const struct device *dev, uint32_t device_id, unsigned int nites) { struct gicv3_its_data *data = dev->data; size_t entry_size, alloc_size; int nr_ites; void *itt; int ret; /* TOFIX check device_id & nites bounds */ entry_size = GITS_TYPER_ITT_ENTRY_SIZE_GET(sys_read64(data->base + GITS_TYPER)) + 1; if (data->dev_table_is_indirect) { size_t offset = device_id >> data->indirect_dev_lvl2_width; /* Check if DeviceID can fit in the Level 1 table */ if (offset > (1 << data->indirect_dev_lvl1_width)) { return -EINVAL; } /* Check if a Level 2 table has already been allocated for the DeviceID */ if (!data->indirect_dev_lvl1_table[offset]) { void *alloc_addr; LOG_INF("Allocating Level 2 Device %ldK table", data->indirect_dev_page_size / 1024); alloc_addr = k_aligned_alloc(data->indirect_dev_page_size, data->indirect_dev_page_size); if (!alloc_addr) { return -ENOMEM; } memset(alloc_addr, 0, data->indirect_dev_page_size); data->indirect_dev_lvl1_table[offset] = (uintptr_t)alloc_addr | MASK_SET(1, GITS_BASER_VALID); barrier_dsync_fence_full(); } } /* ITT must be of power of 2 */ nr_ites = MAX(2, nites); alloc_size = ROUND_UP(nr_ites * entry_size, 256); LOG_INF("Allocating ITT for DeviceID %x and %d vectors (%ld bytes entry)", device_id, nr_ites, entry_size); itt = k_aligned_alloc(256, alloc_size); if (!itt) { return -ENOMEM; } /* size is log2(ites) - 1, equivalent to (fls(ites) - 1) - 1 */ ret = its_send_mapd_cmd(data, device_id, fls_z(nr_ites) - 2, (uintptr_t)itt, true); if (ret) { LOG_ERR("Failed to map device id %x ITT table", device_id); return ret; } return 0; } static unsigned int gicv3_its_alloc_intid(const struct device *dev) { return atomic_inc(&nlpi_intid); } static uint32_t gicv3_its_get_msi_addr(const struct device *dev) { const struct gicv3_its_config *cfg = (const struct gicv3_its_config *)dev->config; return cfg->base_addr + GITS_TRANSLATER; } #define ITS_RDIST_MAP(n) \ { \ const struct device *const dev = DEVICE_DT_INST_GET(n); \ struct gicv3_its_data *data; \ int ret; \ \ if (dev) { \ data = (struct gicv3_its_data *) dev->data; \ ret = its_send_mapc_cmd(data, arch_curr_cpu()->id, \ gicv3_rdist_get_rdbase(dev, arch_curr_cpu()->id), \ true); \ if (ret) { \ LOG_ERR("Failed to map CPU%d redistributor", \ arch_curr_cpu()->id); \ } \ } \ } void its_rdist_map(void) { DT_INST_FOREACH_STATUS_OKAY(ITS_RDIST_MAP) } #define ITS_RDIST_INVALL(n) \ { \ const struct device *const dev = DEVICE_DT_INST_GET(n); \ struct gicv3_its_data *data; \ int ret; \ \ if (dev) { \ data = (struct gicv3_its_data *) dev->data; \ ret = its_send_invall_cmd(data, arch_curr_cpu()->id); \ if (ret) { \ LOG_ERR("Failed to sync RDIST LPI cache for CPU%d", \ arch_curr_cpu()->id); \ } \ \ its_send_sync_cmd(data, \ gicv3_rdist_get_rdbase(dev, arch_curr_cpu()->id)); \ } \ } void its_rdist_invall(void) { DT_INST_FOREACH_STATUS_OKAY(ITS_RDIST_INVALL) } static int gicv3_its_init(const struct device *dev) { const struct gicv3_its_config *cfg = dev->config; struct gicv3_its_data *data = dev->data; uint32_t reg; int ret; device_map(&data->base, cfg->base_addr, cfg->base_size, K_MEM_CACHE_NONE); ret = its_force_quiescent(data); if (ret) { LOG_ERR("Failed to quiesce, giving up"); return ret; } ret = its_alloc_tables(data); if (ret) { LOG_ERR("Failed to allocate tables, giving up"); return ret; } its_setup_cmd_queue(dev); reg = sys_read32(data->base + GITS_CTLR); reg |= MASK_SET(1, GITS_CTLR_ENABLED); sys_write32(reg, data->base + GITS_CTLR); /* Map the boot CPU id to the CPU redistributor */ ret = its_send_mapc_cmd(data, arch_curr_cpu()->id, gicv3_rdist_get_rdbase(dev, arch_curr_cpu()->id), true); if (ret) { LOG_ERR("Failed to map boot CPU redistributor"); return ret; } return 0; } struct its_driver_api gicv3_its_api = { .alloc_intid = gicv3_its_alloc_intid, .setup_deviceid = gicv3_its_init_device_id, .map_intid = gicv3_its_map_intid, .send_int = gicv3_its_send_int, .get_msi_addr = gicv3_its_get_msi_addr, }; #define GICV3_ITS_INIT(n) \ static struct its_cmd_block gicv3_its_cmd##n[ITS_CMD_QUEUE_NR_ENTRIES] \ __aligned(ITS_CMD_QUEUE_SIZE); \ static struct gicv3_its_data gicv3_its_data##n; \ static const struct gicv3_its_config gicv3_its_config##n = { \ .base_addr = DT_INST_REG_ADDR(n), \ .base_size = DT_INST_REG_SIZE(n), \ .cmd_queue = gicv3_its_cmd##n, \ .cmd_queue_size = sizeof(gicv3_its_cmd##n), \ }; \ DEVICE_DT_INST_DEFINE(n, &gicv3_its_init, NULL, \ &gicv3_its_data##n, \ &gicv3_its_config##n, \ PRE_KERNEL_1, \ CONFIG_INTC_INIT_PRIORITY, \ &gicv3_its_api); DT_INST_FOREACH_STATUS_OKAY(GICV3_ITS_INIT)