/* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Kernel thread support * * This module provides general purpose thread support. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct k_spinlock lock; #define _FOREACH_STATIC_THREAD(thread_data) \ Z_STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data) { #if defined(CONFIG_THREAD_MONITOR) struct k_thread *thread; k_spinlock_key_t key; __ASSERT(user_cb != NULL, "user_cb can not be NULL"); /* * Lock is needed to make sure that the _kernel.threads is not being * modified by the user_cb either directly or indirectly. * The indirect ways are through calling k_thread_create and * k_thread_abort from user_cb. */ key = k_spin_lock(&lock); for (thread = _kernel.threads; thread; thread = thread->next_thread) { user_cb(thread, user_data); } k_spin_unlock(&lock, key); #endif } bool k_is_in_isr(void) { return z_is_in_isr(); } /* * This function tags the current thread as essential to system operation. * Exceptions raised by this thread will be treated as a fatal system error. */ void z_thread_essential_set(void) { _current->base.user_options |= K_ESSENTIAL; } /* * This function tags the current thread as not essential to system operation. * Exceptions raised by this thread may be recoverable. * (This is the default tag for a thread.) */ void z_thread_essential_clear(void) { _current->base.user_options &= ~K_ESSENTIAL; } /* * This routine indicates if the current thread is an essential system thread. * * Returns true if current thread is essential, false if it is not. */ bool z_is_thread_essential(void) { return (_current->base.user_options & K_ESSENTIAL) == K_ESSENTIAL; } #ifdef CONFIG_SYS_CLOCK_EXISTS void z_impl_k_busy_wait(u32_t usec_to_wait) { #if !defined(CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT) /* use 64-bit math to prevent overflow when multiplying */ u32_t cycles_to_wait = (u32_t)( (u64_t)usec_to_wait * (u64_t)sys_clock_hw_cycles_per_sec() / (u64_t)USEC_PER_SEC ); u32_t start_cycles = k_cycle_get_32(); for (;;) { u32_t current_cycles = k_cycle_get_32(); /* this handles the rollover on an unsigned 32-bit value */ if ((current_cycles - start_cycles) >= cycles_to_wait) { break; } } #else z_arch_busy_wait(usec_to_wait); #endif /* CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT */ } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_busy_wait, usec_to_wait) { z_impl_k_busy_wait(usec_to_wait); return 0; } #endif /* CONFIG_USERSPACE */ #endif /* CONFIG_SYS_CLOCK_EXISTS */ #ifdef CONFIG_THREAD_CUSTOM_DATA void z_impl_k_thread_custom_data_set(void *value) { _current->custom_data = value; } void *z_impl_k_thread_custom_data_get(void) { return _current->custom_data; } #endif /* CONFIG_THREAD_CUSTOM_DATA */ #if defined(CONFIG_THREAD_MONITOR) /* * Remove a thread from the kernel's list of active threads. */ void z_thread_monitor_exit(struct k_thread *thread) { k_spinlock_key_t key = k_spin_lock(&lock); if (thread == _kernel.threads) { _kernel.threads = _kernel.threads->next_thread; } else { struct k_thread *prev_thread; prev_thread = _kernel.threads; while ((prev_thread != NULL) && (thread != prev_thread->next_thread)) { prev_thread = prev_thread->next_thread; } if (prev_thread != NULL) { prev_thread->next_thread = thread->next_thread; } } k_spin_unlock(&lock, key); } #endif #ifdef CONFIG_THREAD_NAME void z_impl_k_thread_name_set(struct k_thread *thread, const char *value) { if (thread == NULL) { _current->name = value; } else { thread->name = value; } } const char *z_impl_k_thread_name_get(struct k_thread *thread) { return (const char *)thread->name; } #else void z_impl_k_thread_name_set(k_tid_t thread_id, const char *value) { ARG_UNUSED(thread_id); ARG_UNUSED(value); } const char *z_impl_k_thread_name_get(k_tid_t thread_id) { ARG_UNUSED(thread_id); return NULL; } #endif /* CONFIG_THREAD_NAME */ #ifdef CONFIG_USERSPACE #if defined(CONFIG_THREAD_NAME) Z_SYSCALL_HANDLER(k_thread_name_set, thread, data) { char *name_copy = NULL; name_copy = z_user_string_alloc_copy((char *)data, 64); z_impl_k_thread_name_set((struct k_thread *)thread, name_copy); return 0; } Z_SYSCALL_HANDLER1_SIMPLE(k_thread_name_get, K_OBJ_THREAD, k_tid_t); #endif #ifdef CONFIG_THREAD_CUSTOM_DATA Z_SYSCALL_HANDLER(k_thread_custom_data_set, data) { z_impl_k_thread_custom_data_set((void *)data); return 0; } Z_SYSCALL_HANDLER0_SIMPLE(k_thread_custom_data_get); #endif /* CONFIG_THREAD_CUSTOM_DATA */ #endif #ifdef CONFIG_STACK_SENTINEL /* Check that the stack sentinel is still present * * The stack sentinel feature writes a magic value to the lowest 4 bytes of * the thread's stack when the thread is initialized. This value gets checked * in a few places: * * 1) In k_yield() if the current thread is not swapped out * 2) After servicing a non-nested interrupt * 3) In z_swap(), check the sentinel in the outgoing thread * * Item 2 requires support in arch/ code. * * If the check fails, the thread will be terminated appropriately through * the system fatal error handler. */ void z_check_stack_sentinel(void) { u32_t *stack; if ((_current->base.thread_state & _THREAD_DUMMY) != 0) { return; } stack = (u32_t *)_current->stack_info.start; if (*stack != STACK_SENTINEL) { /* Restore it so further checks don't trigger this same error */ *stack = STACK_SENTINEL; z_except_reason(_NANO_ERR_STACK_CHK_FAIL); } } #endif #ifdef CONFIG_MULTITHREADING void z_impl_k_thread_start(struct k_thread *thread) { k_spinlock_key_t key = k_spin_lock(&lock); /* protect kernel queues */ if (z_has_thread_started(thread)) { k_spin_unlock(&lock, key); return; } z_mark_thread_as_started(thread); z_ready_thread(thread); z_reschedule(&lock, key); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_start, K_OBJ_THREAD, struct k_thread *); #endif #endif #ifdef CONFIG_MULTITHREADING static void schedule_new_thread(struct k_thread *thread, s32_t delay) { #ifdef CONFIG_SYS_CLOCK_EXISTS if (delay == 0) { k_thread_start(thread); } else { s32_t ticks = _TICK_ALIGN + z_ms_to_ticks(delay); z_add_thread_timeout(thread, ticks); } #else ARG_UNUSED(delay); k_thread_start(thread); #endif } #endif #if !CONFIG_STACK_POINTER_RANDOM static inline size_t adjust_stack_size(size_t stack_size) { return stack_size; } #else int z_stack_adjust_initialized; static inline size_t adjust_stack_size(size_t stack_size) { size_t random_val; if (!z_stack_adjust_initialized) { random_val = z_early_boot_rand32_get(); } else { random_val = sys_rand32_get(); } /* Don't need to worry about alignment of the size here, z_new_thread() * is required to do it * * FIXME: Not the best way to get a random number in a range. * See #6493 */ const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM; if (unlikely(fuzz * 2 > stack_size)) { return stack_size; } return stack_size - fuzz; } #if defined(CONFIG_STACK_GROWS_UP) /* This is so rare not bothering for now */ #error "Stack pointer randomization not implemented for upward growing stacks" #endif /* CONFIG_STACK_GROWS_UP */ #endif /* CONFIG_STACK_POINTER_RANDOM */ /* * Note: * The caller must guarantee that the stack_size passed here corresponds * to the amount of stack memory available for the thread. */ void z_setup_new_thread(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, u32_t options, const char *name) { stack_size = adjust_stack_size(stack_size); #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA #ifndef CONFIG_THREAD_USERSPACE_LOCAL_DATA_ARCH_DEFER_SETUP /* reserve space on top of stack for local data */ stack_size = STACK_ROUND_DOWN(stack_size - sizeof(*new_thread->userspace_local_data)); #endif #endif z_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3, prio, options); #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA #ifndef CONFIG_THREAD_USERSPACE_LOCAL_DATA_ARCH_DEFER_SETUP /* don't set again if the arch's own code in z_new_thread() has * already set the pointer. */ new_thread->userspace_local_data = (struct _thread_userspace_local_data *) (Z_THREAD_STACK_BUFFER(stack) + stack_size); #endif #endif #ifdef CONFIG_THREAD_MONITOR new_thread->entry.pEntry = entry; new_thread->entry.parameter1 = p1; new_thread->entry.parameter2 = p2; new_thread->entry.parameter3 = p3; k_spinlock_key_t key = k_spin_lock(&lock); new_thread->next_thread = _kernel.threads; _kernel.threads = new_thread; k_spin_unlock(&lock, key); #endif #ifdef CONFIG_THREAD_NAME new_thread->name = name; #endif #ifdef CONFIG_USERSPACE z_object_init(new_thread); z_object_init(stack); new_thread->stack_obj = stack; /* Any given thread has access to itself */ k_object_access_grant(new_thread, new_thread); #endif #ifdef CONFIG_SCHED_CPU_MASK new_thread->base.cpu_mask = -1; #endif #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN /* _current may be null if the dummy thread is not used */ if (!_current) { new_thread->resource_pool = NULL; return; } #endif #ifdef CONFIG_USERSPACE /* New threads inherit any memory domain membership by the parent */ if (_current->mem_domain_info.mem_domain != NULL) { k_mem_domain_add_thread(_current->mem_domain_info.mem_domain, new_thread); } if ((options & K_INHERIT_PERMS) != 0U) { z_thread_perms_inherit(_current, new_thread); } #endif #ifdef CONFIG_SCHED_DEADLINE new_thread->base.prio_deadline = 0; #endif new_thread->resource_pool = _current->resource_pool; sys_trace_thread_create(new_thread); } #ifdef CONFIG_MULTITHREADING k_tid_t z_impl_k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, u32_t options, s32_t delay) { __ASSERT(!z_is_in_isr(), "Threads may not be created in ISRs"); /* Special case, only for unit tests */ #if defined(CONFIG_TEST) && defined(CONFIG_ARCH_HAS_USERSPACE) && !defined(CONFIG_USERSPACE) __ASSERT((options & K_USER) == 0, "Platform is capable of user mode, and test thread created with K_USER option," " but neither CONFIG_TEST_USERSPACE nor CONFIG_USERSPACE is set\n"); #endif z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3, prio, options, NULL); if (delay != K_FOREVER) { schedule_new_thread(new_thread, delay); } return new_thread; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_thread_create, new_thread_p, stack_p, stack_size, entry, p1, more_args) { int prio; u32_t options, delay; u32_t total_size; struct _k_object *stack_object; struct k_thread *new_thread = (struct k_thread *)new_thread_p; volatile struct _syscall_10_args *margs = (volatile struct _syscall_10_args *)more_args; k_thread_stack_t *stack = (k_thread_stack_t *)stack_p; /* The thread and stack objects *must* be in an uninitialized state */ Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD)); stack_object = z_object_find(stack); Z_OOPS(Z_SYSCALL_VERIFY_MSG(z_obj_validation_check(stack_object, stack, K_OBJ__THREAD_STACK_ELEMENT, _OBJ_INIT_FALSE) == 0, "bad stack object")); /* Verify that the stack size passed in is OK by computing the total * size and comparing it with the size value in the object metadata */ Z_OOPS(Z_SYSCALL_VERIFY_MSG(!u32_add_overflow(K_THREAD_STACK_RESERVED, stack_size, &total_size), "stack size overflow (%u+%u)", stack_size, K_THREAD_STACK_RESERVED)); /* Testing less-than-or-equal since additional room may have been * allocated for alignment constraints */ Z_OOPS(Z_SYSCALL_VERIFY_MSG(total_size <= stack_object->data, "stack size %u is too big, max is %u", total_size, stack_object->data)); /* Verify the struct containing args 6-10 */ Z_OOPS(Z_SYSCALL_MEMORY_READ(margs, sizeof(*margs))); /* Stash struct arguments in local variables to prevent switcheroo * attacks */ prio = margs->arg8; options = margs->arg9; delay = margs->arg10; compiler_barrier(); /* User threads may only create other user threads and they can't * be marked as essential */ Z_OOPS(Z_SYSCALL_VERIFY(options & K_USER)); Z_OOPS(Z_SYSCALL_VERIFY(!(options & K_ESSENTIAL))); /* Check validity of prio argument; must be the same or worse priority * than the caller */ Z_OOPS(Z_SYSCALL_VERIFY(_is_valid_prio(prio, NULL))); Z_OOPS(Z_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio, _current->base.prio))); z_setup_new_thread((struct k_thread *)new_thread, stack, stack_size, (k_thread_entry_t)entry, (void *)p1, (void *)margs->arg6, (void *)margs->arg7, prio, options, NULL); if (delay != K_FOREVER) { schedule_new_thread(new_thread, delay); } return new_thread_p; } #endif /* CONFIG_USERSPACE */ #endif /* CONFIG_MULTITHREADING */ void z_thread_single_suspend(struct k_thread *thread) { if (z_is_thread_ready(thread)) { z_remove_thread_from_ready_q(thread); } z_mark_thread_as_suspended(thread); } void z_impl_k_thread_suspend(struct k_thread *thread) { k_spinlock_key_t key = k_spin_lock(&lock); z_thread_single_suspend(thread); sys_trace_thread_suspend(thread); if (thread == _current) { z_reschedule(&lock, key); } else { k_spin_unlock(&lock, key); } } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_suspend, K_OBJ_THREAD, k_tid_t); #endif void z_thread_single_resume(struct k_thread *thread) { z_mark_thread_as_not_suspended(thread); z_ready_thread(thread); } void z_impl_k_thread_resume(struct k_thread *thread) { k_spinlock_key_t key = k_spin_lock(&lock); z_thread_single_resume(thread); sys_trace_thread_resume(thread); z_reschedule(&lock, key); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_resume, K_OBJ_THREAD, k_tid_t); #endif void z_thread_single_abort(struct k_thread *thread) { if (thread->fn_abort != NULL) { thread->fn_abort(); } if (IS_ENABLED(CONFIG_SMP)) { z_sched_abort(thread); } if (z_is_thread_ready(thread)) { z_remove_thread_from_ready_q(thread); } else { if (z_is_thread_pending(thread)) { z_unpend_thread_no_timeout(thread); } if (z_is_thread_timeout_active(thread)) { (void)z_abort_thread_timeout(thread); } } thread->base.thread_state |= _THREAD_DEAD; sys_trace_thread_abort(thread); #ifdef CONFIG_USERSPACE /* Clear initialized state so that this thread object may be re-used * and triggers errors if API calls are made on it from user threads */ z_object_uninit(thread->stack_obj); z_object_uninit(thread); /* Revoke permissions on thread's ID so that it may be recycled */ z_thread_perms_all_clear(thread); #endif } #ifdef CONFIG_MULTITHREADING #ifdef CONFIG_USERSPACE static void grant_static_access(void) { Z_STRUCT_SECTION_FOREACH(_k_object_assignment, pos) { for (int i = 0; pos->objects[i] != NULL; i++) { k_object_access_grant(pos->objects[i], pos->thread); } } } #endif /* CONFIG_USERSPACE */ void z_init_static_threads(void) { _FOREACH_STATIC_THREAD(thread_data) { z_setup_new_thread( thread_data->init_thread, thread_data->init_stack, thread_data->init_stack_size, thread_data->init_entry, thread_data->init_p1, thread_data->init_p2, thread_data->init_p3, thread_data->init_prio, thread_data->init_options, thread_data->init_name); thread_data->init_thread->init_data = thread_data; } #ifdef CONFIG_USERSPACE grant_static_access(); #endif /* * Non-legacy static threads may be started immediately or * after a previously specified delay. Even though the * scheduler is locked, ticks can still be delivered and * processed. Take a sched lock to prevent them from running * until they are all started. * * Note that static threads defined using the legacy API have a * delay of K_FOREVER. */ k_sched_lock(); _FOREACH_STATIC_THREAD(thread_data) { if (thread_data->init_delay != K_FOREVER) { schedule_new_thread(thread_data->init_thread, thread_data->init_delay); } } k_sched_unlock(); } #endif void z_init_thread_base(struct _thread_base *thread_base, int priority, u32_t initial_state, unsigned int options) { /* k_q_node is initialized upon first insertion in a list */ thread_base->user_options = (u8_t)options; thread_base->thread_state = (u8_t)initial_state; thread_base->prio = priority; thread_base->sched_locked = 0U; /* swap_data does not need to be initialized */ z_init_thread_timeout(thread_base); } FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3) { _current->base.user_options |= K_USER; z_thread_essential_clear(); #ifdef CONFIG_THREAD_MONITOR _current->entry.pEntry = entry; _current->entry.parameter1 = p1; _current->entry.parameter2 = p2; _current->entry.parameter3 = p3; #endif #ifdef CONFIG_USERSPACE z_arch_user_mode_enter(entry, p1, p2, p3); #else /* XXX In this case we do not reset the stack */ z_thread_entry(entry, p1, p2, p3); #endif } /* These spinlock assertion predicates are defined here because having * them in spinlock.h is a giant header ordering headache. */ #ifdef SPIN_VALIDATE bool z_spin_lock_valid(struct k_spinlock *l) { if (l->thread_cpu) { if ((l->thread_cpu & 3) == _current_cpu->id) { return false; } } return true; } bool z_spin_unlock_valid(struct k_spinlock *l) { if (l->thread_cpu != (_current_cpu->id | (uintptr_t)_current)) { return false; } l->thread_cpu = 0; return true; } void z_spin_lock_set_owner(struct k_spinlock *l) { l->thread_cpu = _current_cpu->id | (uintptr_t)_current; } int z_impl_k_float_disable(struct k_thread *thread) { #if defined(CONFIG_FLOAT) && defined(CONFIG_FP_SHARING) return z_arch_float_disable(thread); #else return -ENOSYS; #endif /* CONFIG_FLOAT && CONFIG_FP_SHARING */ } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_float_disable, thread_p) { struct k_thread *thread = (struct k_thread *)thread_p; Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); return z_impl_k_float_disable((struct k_thread *)thread_p); } #endif /* CONFIG_USERSPACE */ #endif