/* * Copyright (c) 2019 Carlo Caione * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME /* precompute CYC_PER_TICK at driver init to avoid runtime double divisions */ static uint32_t cyc_per_tick; #define CYC_PER_TICK cyc_per_tick #else #define CYC_PER_TICK (uint32_t)(sys_clock_hw_cycles_per_sec() \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #endif /* the unsigned long cast limits divisors to native CPU register width */ #define cycle_diff_t unsigned long static struct k_spinlock lock; static uint64_t last_cycle; static uint64_t last_tick; static uint32_t last_elapsed; #if defined(CONFIG_TEST) const int32_t z_sys_timer_irq_for_test = ARM_ARCH_TIMER_IRQ; #endif static void arm_arch_timer_compare_isr(const void *arg) { ARG_UNUSED(arg); k_spinlock_key_t key = k_spin_lock(&lock); #ifdef CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 /* * Workaround required for Cortex-A9 MPCore erratum 740657 * comp. ARM Cortex-A9 processors Software Developers Errata Notice, * ARM document ID032315. */ if (!arm_arch_timer_get_int_status()) { /* * If the event flag is not set, this is a spurious interrupt. * DO NOT modify the compare register's value, DO NOT announce * elapsed ticks! */ k_spin_unlock(&lock, key); return; } #endif /* CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 */ uint64_t curr_cycle = arm_arch_timer_count(); uint64_t delta_cycles = curr_cycle - last_cycle; uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK; last_cycle += (cycle_diff_t)delta_ticks * CYC_PER_TICK; last_tick += delta_ticks; last_elapsed = 0; if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { uint64_t next_cycle = last_cycle + CYC_PER_TICK; arm_arch_timer_set_compare(next_cycle); arm_arch_timer_set_irq_mask(false); } else { arm_arch_timer_set_irq_mask(true); #ifdef CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 /* * In tickless mode, the compare register is normally not * updated from within the ISR. Yet, to work around the timer's * erratum, a new value *must* be written while the interrupt * is being processed before the interrupt is acknowledged * by the handling interrupt controller. */ arm_arch_timer_set_compare(~0ULL); } /* * Clear the event flag so that in case the erratum strikes (the timer's * vector will still be indicated as pending by the GIC's pending register * after this ISR has been executed) the error will be detected by the * check performed upon entry of the ISR -> the event flag is not set, * therefore, no actual hardware interrupt has occurred. */ arm_arch_timer_clear_int_status(); #else } #endif /* CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 */ k_spin_unlock(&lock, key); sys_clock_announce(delta_ticks); } void sys_clock_set_timeout(int32_t ticks, bool idle) { #if defined(CONFIG_TICKLESS_KERNEL) if (ticks == K_TICKS_FOREVER) { if (idle) { return; } ticks = INT32_MAX; } /* * Clamp the max period length to a number of cycles that can fit * in half the range of a cycle_diff_t for native width divisions * to be usable elsewhere. Also clamp it to half the range of an * int32_t as this is the type used for elapsed tick announcements. * The half range gives us one bit of extra room to cope with the * unavoidable IRQ servicing latency (we never need as much but this * is simple). The compiler should optimize away the least restrictive * of those tests automatically. */ ticks = CLAMP(ticks, 0, (cycle_diff_t)-1 / 2 / CYC_PER_TICK); ticks = CLAMP(ticks, 0, INT32_MAX / 2); k_spinlock_key_t key = k_spin_lock(&lock); uint64_t next_cycle = (last_tick + last_elapsed + ticks) * CYC_PER_TICK; arm_arch_timer_set_compare(next_cycle); arm_arch_timer_set_irq_mask(false); k_spin_unlock(&lock, key); #else /* CONFIG_TICKLESS_KERNEL */ ARG_UNUSED(ticks); ARG_UNUSED(idle); #endif } uint32_t sys_clock_elapsed(void) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return 0; } k_spinlock_key_t key = k_spin_lock(&lock); uint64_t curr_cycle = arm_arch_timer_count(); uint64_t delta_cycles = curr_cycle - last_cycle; uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK; last_elapsed = delta_ticks; k_spin_unlock(&lock, key); return delta_ticks; } uint32_t sys_clock_cycle_get_32(void) { return (uint32_t)arm_arch_timer_count(); } uint64_t sys_clock_cycle_get_64(void) { return arm_arch_timer_count(); } #ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT void arch_busy_wait(uint32_t usec_to_wait) { if (usec_to_wait == 0) { return; } uint64_t start_cycles = arm_arch_timer_count(); uint64_t cycles_to_wait = sys_clock_hw_cycles_per_sec() / USEC_PER_SEC * usec_to_wait; for (;;) { uint64_t current_cycles = arm_arch_timer_count(); /* this handles the rollover on an unsigned 32-bit value */ if ((current_cycles - start_cycles) >= cycles_to_wait) { break; } } } #endif #ifdef CONFIG_SMP void smp_timer_init(void) { /* * set the initial status of timer0 of each secondary core */ arm_arch_timer_set_compare(last_cycle + CYC_PER_TICK); arm_arch_timer_enable(true); irq_enable(ARM_ARCH_TIMER_IRQ); arm_arch_timer_set_irq_mask(false); } #endif static int sys_clock_driver_init(void) { IRQ_CONNECT(ARM_ARCH_TIMER_IRQ, ARM_ARCH_TIMER_PRIO, arm_arch_timer_compare_isr, NULL, ARM_ARCH_TIMER_FLAGS); arm_arch_timer_init(); #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME cyc_per_tick = sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC; #endif arm_arch_timer_enable(true); last_tick = arm_arch_timer_count() / CYC_PER_TICK; last_cycle = last_tick * CYC_PER_TICK; arm_arch_timer_set_compare(last_cycle + CYC_PER_TICK); irq_enable(ARM_ARCH_TIMER_IRQ); arm_arch_timer_set_irq_mask(false); return 0; } SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);