/* * Copyright (c) 2019 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_xec_gpio_v2 #include #include #include #include #include #include #include #include #include #define XEC_GPIO_EDGE_DLY_COUNT 4 static const uint32_t valid_ctrl_masks[NUM_MCHP_GPIO_PORTS] = { (MCHP_GPIO_PORT_A_BITMAP), (MCHP_GPIO_PORT_B_BITMAP), (MCHP_GPIO_PORT_C_BITMAP), (MCHP_GPIO_PORT_D_BITMAP), (MCHP_GPIO_PORT_E_BITMAP), (MCHP_GPIO_PORT_F_BITMAP), }; struct gpio_xec_data { /* gpio_driver_data needs to be first */ struct gpio_driver_data common; /* port ISR callback routine address */ sys_slist_t callbacks; }; struct gpio_xec_config { /* gpio_driver_config needs to be first */ struct gpio_driver_config common; uintptr_t pcr1_base; uintptr_t parin_addr; uintptr_t parout_addr; uint8_t girq_id; uint8_t port_num; uint32_t flags; }; /* Each GPIO pin 32-bit control register located consecutively in memory */ static inline uintptr_t pin_ctrl_addr(const struct device *dev, gpio_pin_t pin) { const struct gpio_xec_config *config = dev->config; return config->pcr1_base + ((uintptr_t)pin * 4u); } /* GPIO Parallel input is a single 32-bit register per bank of 32 pins */ static inline uintptr_t pin_parin_addr(const struct device *dev) { const struct gpio_xec_config *config = dev->config; return config->parin_addr; } /* GPIO Parallel output is a single 32-bit register per bank of 32 pins */ static inline uintptr_t pin_parout_addr(const struct device *dev) { const struct gpio_xec_config *config = dev->config; return config->parout_addr; } /* * Use Zephyr system API to implement * reg32(addr) = (reg32(addr) & ~mask) | (val & mask) */ static inline void xec_mask_write32(uintptr_t addr, uint32_t mask, uint32_t val) { uint32_t r = (sys_read32(addr) & ~mask) | (val & mask); sys_write32(r, addr); } /* * NOTE: gpio_flags_t b[15:0] are defined in the dt-binding gpio header. * b[31:16] are defined in the driver gpio header. * Hardware only supports push-pull or open-drain. */ static int gpio_xec_validate_flags(gpio_flags_t flags) { if ((flags & (GPIO_SINGLE_ENDED | GPIO_LINE_OPEN_DRAIN)) == (GPIO_SINGLE_ENDED | GPIO_LINE_OPEN_SOURCE)) { return -ENOTSUP; } if ((flags & (GPIO_INPUT | GPIO_OUTPUT)) == (GPIO_INPUT | GPIO_OUTPUT)) { return -ENOTSUP; } if ((flags & GPIO_OUTPUT_INIT_LOW) && (flags & GPIO_OUTPUT_INIT_HIGH)) { return -EINVAL; } return 0; } /* * Each GPIO pin has two 32-bit control registers. Control 1 configures pin * features except for drive strength and slew rate in Control 2. * A pin's input and output state can be read/written from either the Control 1 * register or from corresponding bits in the GPIO parallel input/output registers. * The parallel input and output registers group 32 pins into each register. * The GPIO hardware restricts the pin output state to Control 1 or the parallel bit. * Both output bits reflect each other on read and writes but only one is writable * selected by the output control select bit in Control 1. In the configuration API * we use Control 1 to configure all pin features and output state. Before exiting, * we set the output select for parallel mode enabling writes to the parallel output bit. */ static int gpio_xec_configure(const struct device *dev, gpio_pin_t pin, gpio_flags_t flags) { const struct gpio_xec_config *config = dev->config; uintptr_t pcr1_addr = 0u; uint32_t pcr1 = 0u, pcr1_new = 0u; uint32_t msk = (MCHP_GPIO_CTRL_PWRG_MASK | MCHP_GPIO_CTRL_BUFT_MASK | MCHP_GPIO_CTRL_DIR_MASK | MCHP_GPIO_CTRL_AOD_MASK | BIT(MCHP_GPIO_CTRL_POL_POS) | MCHP_GPIO_CTRL_MUX_MASK | MCHP_GPIO_CTRL_INPAD_DIS_MASK); if (!(valid_ctrl_masks[config->port_num] & BIT(pin))) { return -EINVAL; } int ret = gpio_xec_validate_flags(flags); if (ret) { return ret; } pcr1_addr = pin_ctrl_addr(dev, pin); pcr1 = sys_read32(pcr1_addr); if (flags == GPIO_DISCONNECTED) { pcr1 = (pcr1 & ~MCHP_GPIO_CTRL_PWRG_MASK) | MCHP_GPIO_CTRL_PWRG_OFF; sys_write32(pcr1, pcr1_addr); return 0; } /* final pin state will be powered */ pcr1_new = MCHP_GPIO_CTRL_PWRG_VTR_IO; /* always enable input pad */ if (pcr1 & BIT(MCHP_GPIO_CTRL_INPAD_DIS_POS)) { pcr1 &= ~BIT(MCHP_GPIO_CTRL_INPAD_DIS_POS); sys_write32(pcr1, pcr1_addr); } if (flags & GPIO_OUTPUT) { pcr1_new |= BIT(MCHP_GPIO_CTRL_DIR_POS); msk |= BIT(MCHP_GPIO_CTRL_OUTVAL_POS); if (flags & GPIO_OUTPUT_INIT_HIGH) { pcr1_new |= BIT(MCHP_GPIO_CTRL_OUTVAL_POS); } else if (flags & GPIO_OUTPUT_INIT_LOW) { pcr1_new &= ~BIT(MCHP_GPIO_CTRL_OUTVAL_POS); } else { /* copy current input state to output state */ if ((pcr1 & MCHP_GPIO_CTRL_PWRG_MASK) == MCHP_GPIO_CTRL_PWRG_OFF) { pcr1 &= ~(MCHP_GPIO_CTRL_PWRG_MASK); pcr1 |= MCHP_GPIO_CTRL_PWRG_VTR_IO; sys_write32(pcr1, pcr1_addr); } pcr1 = sys_read32(pcr1_addr); if (pcr1 & BIT(MCHP_GPIO_CTRL_INPAD_VAL_POS)) { pcr1_new |= BIT(MCHP_GPIO_CTRL_OUTVAL_POS); } else { pcr1_new &= ~BIT(MCHP_GPIO_CTRL_OUTVAL_POS); } } if (flags & GPIO_LINE_OPEN_DRAIN) { pcr1_new |= BIT(MCHP_GPIO_CTRL_BUFT_POS); } } if (flags & (GPIO_PULL_UP | GPIO_PULL_DOWN)) { msk |= MCHP_GPIO_CTRL_PUD_MASK; /* both bits specifies repeater mode */ if (flags & GPIO_PULL_UP) { pcr1_new |= MCHP_GPIO_CTRL_PUD_PU; } if (flags & GPIO_PULL_DOWN) { pcr1_new |= MCHP_GPIO_CTRL_PUD_PD; } } /* * Problem, if pin was power gated off we can't read input. * How to turn on pin to read input but not glitch it? */ pcr1 = (pcr1 & ~msk) | (pcr1_new & msk); sys_write32(pcr1, pcr1_addr); /* configuration. may generate a single edge */ /* Control output bit becomes read-only and parallel out register bit becomes r/w */ sys_write32(pcr1 | BIT(MCHP_GPIO_CTRL_AOD_POS), pcr1_addr); return 0; } static int gen_gpio_ctrl_icfg(enum gpio_int_mode mode, enum gpio_int_trig trig, uint32_t *pin_ctr1) { if (!pin_ctr1) { return -EINVAL; } if (mode == GPIO_INT_MODE_DISABLED) { *pin_ctr1 = MCHP_GPIO_CTRL_IDET_DISABLE; } else { if (mode == GPIO_INT_MODE_LEVEL) { if (trig == GPIO_INT_TRIG_HIGH) { *pin_ctr1 = MCHP_GPIO_CTRL_IDET_LVL_HI; } else { *pin_ctr1 = MCHP_GPIO_CTRL_IDET_LVL_LO; } } else { switch (trig) { case GPIO_INT_TRIG_LOW: *pin_ctr1 = MCHP_GPIO_CTRL_IDET_FEDGE; break; case GPIO_INT_TRIG_HIGH: *pin_ctr1 = MCHP_GPIO_CTRL_IDET_REDGE; break; case GPIO_INT_TRIG_BOTH: *pin_ctr1 = MCHP_GPIO_CTRL_IDET_BEDGE; break; default: return -EINVAL; } } } return 0; } static void gpio_xec_intr_en(gpio_pin_t pin, enum gpio_int_mode mode, uint8_t girq_id) { if (mode != GPIO_INT_MODE_DISABLED) { /* Enable interrupt to propagate via its GIRQ to the NVIC */ mchp_soc_ecia_girq_src_en(girq_id, pin); } } static int gpio_xec_pin_interrupt_configure(const struct device *dev, gpio_pin_t pin, enum gpio_int_mode mode, enum gpio_int_trig trig) { const struct gpio_xec_config *config = dev->config; uintptr_t pcr1_addr = pin_ctrl_addr(dev, pin); uint32_t pcr1 = 0u; uint32_t pcr1_req = 0u; /* Validate pin number range in terms of current port */ if ((valid_ctrl_masks[config->port_num] & BIT(pin)) == 0U) { return -EINVAL; } /* Check if GPIO port supports interrupts */ if ((mode != GPIO_INT_MODE_DISABLED) && ((config->flags & GPIO_INT_ENABLE) == 0)) { return -ENOTSUP; } pcr1_req = MCHP_GPIO_CTRL_IDET_DISABLE; if (gen_gpio_ctrl_icfg(mode, trig, &pcr1_req)) { return -EINVAL; } /* Disable interrupt in the EC aggregator */ mchp_soc_ecia_girq_src_dis(config->girq_id, pin); /* pin configuration matches requested detection mode? */ pcr1 = sys_read32(pcr1_addr); /* HW detects interrupt on input. Make sure input pad disable is cleared */ pcr1 &= ~BIT(MCHP_GPIO_CTRL_INPAD_DIS_POS); if ((pcr1 & MCHP_GPIO_CTRL_IDET_MASK) == pcr1_req) { gpio_xec_intr_en(pin, mode, config->girq_id); return 0; } pcr1 &= ~MCHP_GPIO_CTRL_IDET_MASK; if (mode == GPIO_INT_MODE_LEVEL) { if (trig == GPIO_INT_TRIG_HIGH) { pcr1 |= MCHP_GPIO_CTRL_IDET_LVL_HI; } else { pcr1 |= MCHP_GPIO_CTRL_IDET_LVL_LO; } } else if (mode == GPIO_INT_MODE_EDGE) { if (trig == GPIO_INT_TRIG_LOW) { pcr1 |= MCHP_GPIO_CTRL_IDET_FEDGE; } else if (trig == GPIO_INT_TRIG_HIGH) { pcr1 |= MCHP_GPIO_CTRL_IDET_REDGE; } else if (trig == GPIO_INT_TRIG_BOTH) { pcr1 |= MCHP_GPIO_CTRL_IDET_BEDGE; } } else { pcr1 |= MCHP_GPIO_CTRL_IDET_DISABLE; } sys_write32(pcr1, pcr1_addr); /* delay for HW to synchronize after it ungates its clock */ for (int i = 0; i < XEC_GPIO_EDGE_DLY_COUNT; i++) { sys_read32(pcr1_addr); } mchp_soc_ecia_girq_src_clr(config->girq_id, pin); gpio_xec_intr_en(pin, mode, config->girq_id); return 0; } static int gpio_xec_port_set_masked_raw(const struct device *dev, uint32_t mask, uint32_t value) { uintptr_t pout_addr = pin_parout_addr(dev); xec_mask_write32(pout_addr, mask, value); return 0; } static int gpio_xec_port_set_bits_raw(const struct device *dev, uint32_t mask) { uintptr_t pout_addr = pin_parout_addr(dev); sys_write32(sys_read32(pout_addr) | mask, pout_addr); return 0; } static int gpio_xec_port_clear_bits_raw(const struct device *dev, uint32_t mask) { uintptr_t pout_addr = pin_parout_addr(dev); sys_write32(sys_read32(pout_addr) & ~mask, pout_addr); return 0; } static int gpio_xec_port_toggle_bits(const struct device *dev, uint32_t mask) { uintptr_t pout_addr = pin_parout_addr(dev); sys_write32(sys_read32(pout_addr) ^ mask, pout_addr); return 0; } static int gpio_xec_port_get_raw(const struct device *dev, uint32_t *value) { uintptr_t pin_addr = pin_parin_addr(dev); *value = sys_read32(pin_addr); return 0; } static int gpio_xec_manage_callback(const struct device *dev, struct gpio_callback *callback, bool set) { struct gpio_xec_data *data = dev->data; gpio_manage_callback(&data->callbacks, callback, set); return 0; } #ifdef CONFIG_GPIO_GET_DIRECTION static int gpio_xec_get_direction(const struct device *port, gpio_port_pins_t map, gpio_port_pins_t *inputs, gpio_port_pins_t *outputs) { if (!port) { return -EINVAL; } const struct gpio_xec_config *config = port->config; uint32_t valid_msk = valid_ctrl_masks[config->port_num]; *inputs = 0u; *outputs = 0u; for (uint8_t pin = 0; pin < 32; pin++) { if (!map) { break; } if ((map & BIT(pin)) && (valid_msk & BIT(pin))) { uintptr_t pcr1_addr = pin_ctrl_addr(port, pin); uint32_t pcr1 = sys_read32(pcr1_addr); if (!((pcr1 & MCHP_GPIO_CTRL_PWRG_MASK) == MCHP_GPIO_CTRL_PWRG_OFF)) { if (outputs && (pcr1 & BIT(MCHP_GPIO_CTRL_DIR_POS))) { *outputs |= BIT(pin); } else if (inputs && !(pcr1 & BIT(MCHP_GPIO_CTRL_INPAD_DIS_POS))) { *inputs |= BIT(pin); } } map &= ~BIT(pin); } } return 0; } #endif #ifdef CONFIG_GPIO_GET_CONFIG int gpio_xec_get_config(const struct device *port, gpio_pin_t pin, gpio_flags_t *flags) { if (!port || !flags) { return -EINVAL; } const struct gpio_xec_config *config = port->config; uint32_t valid_msk = valid_ctrl_masks[config->port_num]; if (!(valid_msk & BIT(pin))) { return -EINVAL; /* Or should we set *flags = GPIO_DISCONNECTED and return success? */ } uintptr_t pcr1_addr = pin_ctrl_addr(port, pin); uint32_t pcr1 = sys_read32(pcr1_addr); uint32_t pin_flags = 0u; if (pcr1 & BIT(MCHP_GPIO_CTRL_DIR_POS)) { pin_flags |= GPIO_OUTPUT; if (pcr1 & BIT(MCHP_GPIO_CTRL_OUTVAL_POS)) { pin_flags |= GPIO_OUTPUT_INIT_HIGH; } else { pin_flags |= GPIO_OUTPUT_INIT_LOW; } if (pcr1 & BIT(MCHP_GPIO_CTRL_BUFT_POS)) { pin_flags |= GPIO_OPEN_DRAIN; } } else if (!(pcr1 & BIT(MCHP_GPIO_CTRL_INPAD_DIS_POS))) { pin_flags |= GPIO_INPUT; } if (pin_flags) { *flags = pin_flags; } else { *flags = GPIO_DISCONNECTED; } return 0; } #endif static void gpio_gpio_xec_port_isr(const struct device *dev) { const struct gpio_xec_config *config = dev->config; struct gpio_xec_data *data = dev->data; uint32_t girq_result; /* * Figure out which interrupts have been triggered from the EC * aggregator result register */ girq_result = mchp_soc_ecia_girq_result(config->girq_id); /* Clear source register in aggregator before firing callbacks */ mchp_soc_ecia_girq_src_clr_bitmap(config->girq_id, girq_result); gpio_fire_callbacks(&data->callbacks, dev, girq_result); } /* GPIO driver official API table */ static const struct gpio_driver_api gpio_xec_driver_api = { .pin_configure = gpio_xec_configure, .port_get_raw = gpio_xec_port_get_raw, .port_set_masked_raw = gpio_xec_port_set_masked_raw, .port_set_bits_raw = gpio_xec_port_set_bits_raw, .port_clear_bits_raw = gpio_xec_port_clear_bits_raw, .port_toggle_bits = gpio_xec_port_toggle_bits, .pin_interrupt_configure = gpio_xec_pin_interrupt_configure, .manage_callback = gpio_xec_manage_callback, #ifdef CONFIG_GPIO_GET_DIRECTION .port_get_direction = gpio_xec_get_direction, #endif #ifdef CONFIG_GPIO_GET_CONFIG .pin_get_config = gpio_xec_get_config, #endif }; #define XEC_GPIO_PORT_FLAGS(n) \ ((DT_INST_IRQ_HAS_CELL(n, irq)) ? GPIO_INT_ENABLE : 0) #define XEC_GPIO_PORT(n) \ static int gpio_xec_port_init_##n(const struct device *dev) \ { \ if (!(DT_INST_IRQ_HAS_CELL(n, irq))) { \ return 0; \ } \ \ const struct gpio_xec_config *config = dev->config; \ \ mchp_soc_ecia_girq_aggr_en(config->girq_id, 1); \ \ IRQ_CONNECT(DT_INST_IRQN(n), \ DT_INST_IRQ(n, priority), \ gpio_gpio_xec_port_isr, \ DEVICE_DT_INST_GET(n), 0U); \ \ irq_enable(DT_INST_IRQN(n)); \ \ return 0; \ } \ \ static struct gpio_xec_data gpio_xec_port_data_##n; \ \ static const struct gpio_xec_config xec_gpio_config_##n = { \ .common = { \ .port_pin_mask = \ GPIO_PORT_PIN_MASK_FROM_DT_INST(n), \ }, \ .pcr1_base = (uintptr_t)DT_INST_REG_ADDR_BY_IDX(n, 0), \ .parin_addr = (uintptr_t)DT_INST_REG_ADDR_BY_IDX(n, 1), \ .parout_addr = (uintptr_t)DT_INST_REG_ADDR_BY_IDX(n, 2),\ .port_num = DT_INST_PROP(n, port_id), \ .girq_id = DT_INST_PROP_OR(n, girq_id, 0), \ .flags = XEC_GPIO_PORT_FLAGS(n), \ }; \ \ DEVICE_DT_INST_DEFINE(n, gpio_xec_port_init_##n, NULL, \ &gpio_xec_port_data_##n, &xec_gpio_config_##n, \ PRE_KERNEL_1, CONFIG_GPIO_INIT_PRIORITY, \ &gpio_xec_driver_api); DT_INST_FOREACH_STATUS_OKAY(XEC_GPIO_PORT)