/* * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_SCHED_DUMB) #define _priq_run_add z_priq_dumb_add #define _priq_run_remove z_priq_dumb_remove # if defined(CONFIG_SCHED_CPU_MASK) # define _priq_run_best _priq_dumb_mask_best # else # define _priq_run_best z_priq_dumb_best # endif #elif defined(CONFIG_SCHED_SCALABLE) #define _priq_run_add z_priq_rb_add #define _priq_run_remove z_priq_rb_remove #define _priq_run_best z_priq_rb_best #elif defined(CONFIG_SCHED_MULTIQ) #define _priq_run_add z_priq_mq_add #define _priq_run_remove z_priq_mq_remove #define _priq_run_best z_priq_mq_best #endif #if defined(CONFIG_WAITQ_SCALABLE) #define z_priq_wait_add z_priq_rb_add #define _priq_wait_remove z_priq_rb_remove #define _priq_wait_best z_priq_rb_best #elif defined(CONFIG_WAITQ_DUMB) #define z_priq_wait_add z_priq_dumb_add #define _priq_wait_remove z_priq_dumb_remove #define _priq_wait_best z_priq_dumb_best #endif /* the only struct z_kernel instance */ struct z_kernel _kernel; static struct k_spinlock sched_spinlock; #define LOCKED(lck) for (k_spinlock_key_t __i = {}, \ __key = k_spin_lock(lck); \ !__i.key; \ k_spin_unlock(lck, __key), __i.key = 1) static inline int is_preempt(struct k_thread *thread) { #ifdef CONFIG_PREEMPT_ENABLED /* explanation in kernel_struct.h */ return thread->base.preempt <= _PREEMPT_THRESHOLD; #else return 0; #endif } static inline int is_metairq(struct k_thread *thread) { #if CONFIG_NUM_METAIRQ_PRIORITIES > 0 return (thread->base.prio - K_HIGHEST_THREAD_PRIO) < CONFIG_NUM_METAIRQ_PRIORITIES; #else return 0; #endif } #if CONFIG_ASSERT static inline int is_thread_dummy(struct k_thread *thread) { return !!(thread->base.thread_state & _THREAD_DUMMY); } #endif static inline bool is_idle(struct k_thread *thread) { #ifdef CONFIG_SMP return thread->base.is_idle; #else extern k_tid_t const _idle_thread; return thread == _idle_thread; #endif } bool z_is_t1_higher_prio_than_t2(struct k_thread *t1, struct k_thread *t2) { if (t1->base.prio < t2->base.prio) { return true; } #ifdef CONFIG_SCHED_DEADLINE /* Note that we don't care about wraparound conditions. The * expectation is that the application will have arranged to * block the threads, change their priorities or reset their * deadlines when the job is complete. Letting the deadlines * go negative is fine and in fact prevents aliasing bugs. */ if (t1->base.prio == t2->base.prio) { int now = (int) k_cycle_get_32(); int dt1 = t1->base.prio_deadline - now; int dt2 = t2->base.prio_deadline - now; return dt1 < dt2; } #endif return false; } static ALWAYS_INLINE bool should_preempt(struct k_thread *th, int preempt_ok) { /* Preemption is OK if it's being explicitly allowed by * software state (e.g. the thread called k_yield()) */ if (preempt_ok != 0) { return true; } __ASSERT(_current != NULL, ""); /* Or if we're pended/suspended/dummy (duh) */ if (z_is_thread_prevented_from_running(_current)) { return true; } /* Edge case on ARM where a thread can be pended out of an * interrupt handler before the "synchronous" swap starts * context switching. Platforms with atomic swap can never * hit this. */ if (IS_ENABLED(CONFIG_SWAP_NONATOMIC) && z_is_thread_timeout_active(th)) { return true; } /* Otherwise we have to be running a preemptible thread or * switching to a metairq */ if (is_preempt(_current) || is_metairq(th)) { return true; } /* The idle threads can look "cooperative" if there are no * preemptible priorities (this is sort of an API glitch). * They must always be preemptible. */ if (!IS_ENABLED(CONFIG_PREEMPT_ENABLED) && is_idle(_current)) { return true; } return false; } #ifdef CONFIG_SCHED_CPU_MASK static ALWAYS_INLINE struct k_thread *_priq_dumb_mask_best(sys_dlist_t *pq) { /* With masks enabled we need to be prepared to walk the list * looking for one we can run */ struct k_thread *t; SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) { if ((t->base.cpu_mask & BIT(_current_cpu->id)) != 0) { return t; } } return NULL; } #endif static ALWAYS_INLINE struct k_thread *next_up(void) { #ifndef CONFIG_SMP /* In uniprocessor mode, we can leave the current thread in * the queue (actually we have to, otherwise the assembly * context switch code for all architectures would be * responsible for putting it back in z_swap and ISR return!), * which makes this choice simple. */ struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq); return th ? th : _current_cpu->idle_thread; #else /* Under SMP, the "cache" mechanism for selecting the next * thread doesn't work, so we have more work to do to test * _current against the best choice from the queue. * * Subtle note on "queued": in SMP mode, _current does not * live in the queue, so this isn't exactly the same thing as * "ready", it means "is _current already added back to the * queue such that we don't want to re-add it". */ int queued = z_is_thread_queued(_current); int active = !z_is_thread_prevented_from_running(_current); /* Choose the best thread that is not current */ struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq); if (th == NULL) { th = _current_cpu->idle_thread; } if (active) { if (!queued && !z_is_t1_higher_prio_than_t2(th, _current)) { th = _current; } if (!should_preempt(th, _current_cpu->swap_ok)) { th = _current; } } /* Put _current back into the queue */ if (th != _current && active && !is_idle(_current) && !queued) { _priq_run_add(&_kernel.ready_q.runq, _current); z_mark_thread_as_queued(_current); } /* Take the new _current out of the queue */ if (z_is_thread_queued(th)) { _priq_run_remove(&_kernel.ready_q.runq, th); } z_mark_thread_as_not_queued(th); return th; #endif } #ifdef CONFIG_TIMESLICING static int slice_time; static int slice_max_prio; #ifdef CONFIG_SWAP_NONATOMIC /* If z_swap() isn't atomic, then it's possible for a timer interrupt * to try to timeslice away _current after it has already pended * itself but before the corresponding context switch. Treat that as * a noop condition in z_time_slice(). */ static struct k_thread *pending_current; #endif static void reset_time_slice(void) { /* Add the elapsed time since the last announced tick to the * slice count, as we'll see those "expired" ticks arrive in a * FUTURE z_time_slice() call. */ _current_cpu->slice_ticks = slice_time + z_clock_elapsed(); z_set_timeout_expiry(slice_time, false); } void k_sched_time_slice_set(s32_t slice, int prio) { LOCKED(&sched_spinlock) { _current_cpu->slice_ticks = 0; slice_time = z_ms_to_ticks(slice); slice_max_prio = prio; reset_time_slice(); } } static inline int sliceable(struct k_thread *t) { return is_preempt(t) && !z_is_prio_higher(t->base.prio, slice_max_prio) && !is_idle(t) && !z_is_thread_timeout_active(t); } /* Called out of each timer interrupt */ void z_time_slice(int ticks) { #ifdef CONFIG_SWAP_NONATOMIC if (pending_current == _current) { reset_time_slice(); return; } pending_current = NULL; #endif if (slice_time && sliceable(_current)) { if (ticks >= _current_cpu->slice_ticks) { z_move_thread_to_end_of_prio_q(_current); reset_time_slice(); } else { _current_cpu->slice_ticks -= ticks; } } } #else static void reset_time_slice(void) { /* !CONFIG_TIMESLICING */ } #endif static void update_cache(int preempt_ok) { #ifndef CONFIG_SMP struct k_thread *th = next_up(); if (should_preempt(th, preempt_ok)) { if (th != _current) { reset_time_slice(); } _kernel.ready_q.cache = th; } else { _kernel.ready_q.cache = _current; } #else /* The way this works is that the CPU record keeps its * "cooperative swapping is OK" flag until the next reschedule * call or context switch. It doesn't need to be tracked per * thread because if the thread gets preempted for whatever * reason the scheduler will make the same decision anyway. */ _current_cpu->swap_ok = preempt_ok; #endif } void z_add_thread_to_ready_q(struct k_thread *thread) { LOCKED(&sched_spinlock) { _priq_run_add(&_kernel.ready_q.runq, thread); z_mark_thread_as_queued(thread); update_cache(0); } } void z_move_thread_to_end_of_prio_q(struct k_thread *thread) { LOCKED(&sched_spinlock) { _priq_run_remove(&_kernel.ready_q.runq, thread); _priq_run_add(&_kernel.ready_q.runq, thread); z_mark_thread_as_queued(thread); update_cache(thread == _current); } } void z_remove_thread_from_ready_q(struct k_thread *thread) { LOCKED(&sched_spinlock) { if (z_is_thread_queued(thread)) { _priq_run_remove(&_kernel.ready_q.runq, thread); z_mark_thread_as_not_queued(thread); } update_cache(thread == _current); } } static void pend(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout) { z_remove_thread_from_ready_q(thread); z_mark_thread_as_pending(thread); if (wait_q != NULL) { thread->base.pended_on = wait_q; z_priq_wait_add(&wait_q->waitq, thread); } if (timeout != K_FOREVER) { s32_t ticks = _TICK_ALIGN + z_ms_to_ticks(timeout); z_add_thread_timeout(thread, ticks); } sys_trace_thread_pend(thread); } void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout) { __ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread)); pend(thread, wait_q, timeout); } static _wait_q_t *pended_on(struct k_thread *thread) { __ASSERT_NO_MSG(thread->base.pended_on); return thread->base.pended_on; } ALWAYS_INLINE struct k_thread *z_find_first_thread_to_unpend(_wait_q_t *wait_q, struct k_thread *from) { ARG_UNUSED(from); struct k_thread *ret = NULL; LOCKED(&sched_spinlock) { ret = _priq_wait_best(&wait_q->waitq); } return ret; } ALWAYS_INLINE void z_unpend_thread_no_timeout(struct k_thread *thread) { LOCKED(&sched_spinlock) { _priq_wait_remove(&pended_on(thread)->waitq, thread); z_mark_thread_as_not_pending(thread); } thread->base.pended_on = NULL; } #ifdef CONFIG_SYS_CLOCK_EXISTS /* Timeout handler for *_thread_timeout() APIs */ void z_thread_timeout(struct _timeout *to) { struct k_thread *th = CONTAINER_OF(to, struct k_thread, base.timeout); if (th->base.pended_on != NULL) { z_unpend_thread_no_timeout(th); } z_mark_thread_as_started(th); z_ready_thread(th); } #endif int z_pend_curr_irqlock(u32_t key, _wait_q_t *wait_q, s32_t timeout) { pend(_current, wait_q, timeout); #if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) pending_current = _current; int ret = z_swap_irqlock(key); LOCKED(&sched_spinlock) { if (pending_current == _current) { pending_current = NULL; } } return ret; #else return z_swap_irqlock(key); #endif } int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, _wait_q_t *wait_q, s32_t timeout) { #if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) pending_current = _current; #endif pend(_current, wait_q, timeout); return z_swap(lock, key); } struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q) { struct k_thread *t = z_unpend1_no_timeout(wait_q); if (t != NULL) { (void)z_abort_thread_timeout(t); } return t; } void z_unpend_thread(struct k_thread *thread) { z_unpend_thread_no_timeout(thread); (void)z_abort_thread_timeout(thread); } void z_thread_priority_set(struct k_thread *thread, int prio) { bool need_sched = 0; LOCKED(&sched_spinlock) { need_sched = z_is_thread_ready(thread); if (need_sched) { _priq_run_remove(&_kernel.ready_q.runq, thread); thread->base.prio = prio; _priq_run_add(&_kernel.ready_q.runq, thread); update_cache(1); } else { thread->base.prio = prio; } } sys_trace_thread_priority_set(thread); if (IS_ENABLED(CONFIG_SMP) && !IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) { z_sched_ipi(); } if (need_sched && _current->base.sched_locked == 0) { z_reschedule_unlocked(); } } static inline int resched(void) { #ifdef CONFIG_SMP if (!_current_cpu->swap_ok) { return 0; } _current_cpu->swap_ok = 0; #endif return !z_is_in_isr(); } void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key) { if (resched()) { z_swap(lock, key); } else { k_spin_unlock(lock, key); } } void z_reschedule_irqlock(u32_t key) { if (resched()) { z_swap_irqlock(key); } else { irq_unlock(key); } } void k_sched_lock(void) { LOCKED(&sched_spinlock) { z_sched_lock(); } } void k_sched_unlock(void) { #ifdef CONFIG_PREEMPT_ENABLED __ASSERT(_current->base.sched_locked != 0, ""); __ASSERT(!z_is_in_isr(), ""); LOCKED(&sched_spinlock) { ++_current->base.sched_locked; update_cache(1); } K_DEBUG("scheduler unlocked (%p:%d)\n", _current, _current->base.sched_locked); z_reschedule_unlocked(); #endif } #ifdef CONFIG_SMP struct k_thread *z_get_next_ready_thread(void) { struct k_thread *ret = 0; LOCKED(&sched_spinlock) { ret = next_up(); } return ret; } #endif /* Just a wrapper around _current = xxx with tracing */ static inline void set_current(struct k_thread *new_thread) { #ifdef CONFIG_TRACING sys_trace_thread_switched_out(); #endif _current = new_thread; #ifdef CONFIG_TRACING sys_trace_thread_switched_in(); #endif } #ifdef CONFIG_USE_SWITCH void *z_get_next_switch_handle(void *interrupted) { _current->switch_handle = interrupted; #ifdef CONFIG_SMP LOCKED(&sched_spinlock) { struct k_thread *th = next_up(); if (_current != th) { reset_time_slice(); _current_cpu->swap_ok = 0; set_current(th); #ifdef SPIN_VALIDATE /* Changed _current! Update the spinlock * bookeeping so the validation doesn't get * confused when the "wrong" thread tries to * release the lock. */ z_spin_lock_set_owner(&sched_spinlock); #endif } } #else set_current(z_get_next_ready_thread()); #endif /* Some architectures don't have a working IPI, so the best we * can do there is check the abort status of the current * thread here on ISR exit */ if (IS_ENABLED(CONFIG_SMP) && !IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) { z_sched_ipi(); } z_check_stack_sentinel(); return _current->switch_handle; } #endif ALWAYS_INLINE void z_priq_dumb_add(sys_dlist_t *pq, struct k_thread *thread) { struct k_thread *t; __ASSERT_NO_MSG(!is_idle(thread)); SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) { if (z_is_t1_higher_prio_than_t2(thread, t)) { sys_dlist_insert(&t->base.qnode_dlist, &thread->base.qnode_dlist); return; } } sys_dlist_append(pq, &thread->base.qnode_dlist); } void z_priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread) { #if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_SCHED_DUMB) if (pq == &_kernel.ready_q.runq && thread == _current && z_is_thread_prevented_from_running(thread)) { return; } #endif __ASSERT_NO_MSG(!is_idle(thread)); sys_dlist_remove(&thread->base.qnode_dlist); } struct k_thread *z_priq_dumb_best(sys_dlist_t *pq) { struct k_thread *t = NULL; sys_dnode_t *n = sys_dlist_peek_head(pq); if (n != NULL) { t = CONTAINER_OF(n, struct k_thread, base.qnode_dlist); } return t; } bool z_priq_rb_lessthan(struct rbnode *a, struct rbnode *b) { struct k_thread *ta, *tb; ta = CONTAINER_OF(a, struct k_thread, base.qnode_rb); tb = CONTAINER_OF(b, struct k_thread, base.qnode_rb); if (z_is_t1_higher_prio_than_t2(ta, tb)) { return true; } else if (z_is_t1_higher_prio_than_t2(tb, ta)) { return false; } else { return ta->base.order_key < tb->base.order_key ? 1 : 0; } } void z_priq_rb_add(struct _priq_rb *pq, struct k_thread *thread) { struct k_thread *t; __ASSERT_NO_MSG(!is_idle(thread)); thread->base.order_key = pq->next_order_key++; /* Renumber at wraparound. This is tiny code, and in practice * will almost never be hit on real systems. BUT on very * long-running systems where a priq never completely empties * AND that contains very large numbers of threads, it can be * a latency glitch to loop over all the threads like this. */ if (!pq->next_order_key) { RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) { t->base.order_key = pq->next_order_key++; } } rb_insert(&pq->tree, &thread->base.qnode_rb); } void z_priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread) { #if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_SCHED_SCALABLE) if (pq == &_kernel.ready_q.runq && thread == _current && z_is_thread_prevented_from_running(thread)) { return; } #endif __ASSERT_NO_MSG(!is_idle(thread)); rb_remove(&pq->tree, &thread->base.qnode_rb); if (!pq->tree.root) { pq->next_order_key = 0; } } struct k_thread *z_priq_rb_best(struct _priq_rb *pq) { struct k_thread *t = NULL; struct rbnode *n = rb_get_min(&pq->tree); if (n != NULL) { t = CONTAINER_OF(n, struct k_thread, base.qnode_rb); } return t; } #ifdef CONFIG_SCHED_MULTIQ # if (K_LOWEST_THREAD_PRIO - K_HIGHEST_THREAD_PRIO) > 31 # error Too many priorities for multiqueue scheduler (max 32) # endif #endif ALWAYS_INLINE void z_priq_mq_add(struct _priq_mq *pq, struct k_thread *thread) { int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO; sys_dlist_append(&pq->queues[priority_bit], &thread->base.qnode_dlist); pq->bitmask |= (1 << priority_bit); } ALWAYS_INLINE void z_priq_mq_remove(struct _priq_mq *pq, struct k_thread *thread) { #if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_SCHED_MULTIQ) if (pq == &_kernel.ready_q.runq && thread == _current && z_is_thread_prevented_from_running(thread)) { return; } #endif int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO; sys_dlist_remove(&thread->base.qnode_dlist); if (sys_dlist_is_empty(&pq->queues[priority_bit])) { pq->bitmask &= ~(1 << priority_bit); } } struct k_thread *z_priq_mq_best(struct _priq_mq *pq) { if (!pq->bitmask) { return NULL; } struct k_thread *t = NULL; sys_dlist_t *l = &pq->queues[__builtin_ctz(pq->bitmask)]; sys_dnode_t *n = sys_dlist_peek_head(l); if (n != NULL) { t = CONTAINER_OF(n, struct k_thread, base.qnode_dlist); } return t; } int z_unpend_all(_wait_q_t *wait_q) { int need_sched = 0; struct k_thread *th; while ((th = z_waitq_head(wait_q)) != NULL) { z_unpend_thread(th); z_ready_thread(th); need_sched = 1; } return need_sched; } void z_sched_init(void) { #ifdef CONFIG_SCHED_DUMB sys_dlist_init(&_kernel.ready_q.runq); #endif #ifdef CONFIG_SCHED_SCALABLE _kernel.ready_q.runq = (struct _priq_rb) { .tree = { .lessthan_fn = z_priq_rb_lessthan, } }; #endif #ifdef CONFIG_SCHED_MULTIQ for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) { sys_dlist_init(&_kernel.ready_q.runq.queues[i]); } #endif #ifdef CONFIG_TIMESLICING k_sched_time_slice_set(CONFIG_TIMESLICE_SIZE, CONFIG_TIMESLICE_PRIORITY); #endif } int z_impl_k_thread_priority_get(k_tid_t thread) { return thread->base.prio; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER1_SIMPLE(k_thread_priority_get, K_OBJ_THREAD, struct k_thread *); #endif void z_impl_k_thread_priority_set(k_tid_t tid, int prio) { /* * Use NULL, since we cannot know what the entry point is (we do not * keep track of it) and idle cannot change its priority. */ Z_ASSERT_VALID_PRIO(prio, NULL); __ASSERT(!z_is_in_isr(), ""); struct k_thread *thread = (struct k_thread *)tid; z_thread_priority_set(thread, prio); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_thread_priority_set, thread_p, prio) { struct k_thread *thread = (struct k_thread *)thread_p; Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL), "invalid thread priority %d", (int)prio)); Z_OOPS(Z_SYSCALL_VERIFY_MSG((s8_t)prio >= thread->base.prio, "thread priority may only be downgraded (%d < %d)", prio, thread->base.prio)); z_impl_k_thread_priority_set((k_tid_t)thread, prio); return 0; } #endif #ifdef CONFIG_SCHED_DEADLINE void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline) { struct k_thread *th = tid; LOCKED(&sched_spinlock) { th->base.prio_deadline = k_cycle_get_32() + deadline; if (z_is_thread_queued(th)) { _priq_run_remove(&_kernel.ready_q.runq, th); _priq_run_add(&_kernel.ready_q.runq, th); } } } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_thread_deadline_set, thread_p, deadline) { struct k_thread *thread = (struct k_thread *)thread_p; Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); Z_OOPS(Z_SYSCALL_VERIFY_MSG(deadline > 0, "invalid thread deadline %d", (int)deadline)); z_impl_k_thread_deadline_set((k_tid_t)thread, deadline); return 0; } #endif #endif void z_impl_k_yield(void) { __ASSERT(!z_is_in_isr(), ""); if (!is_idle(_current)) { LOCKED(&sched_spinlock) { if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(_current)) { _priq_run_remove(&_kernel.ready_q.runq, _current); _priq_run_add(&_kernel.ready_q.runq, _current); } update_cache(1); } } z_swap_unlocked(); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER0_SIMPLE_VOID(k_yield); #endif s32_t z_impl_k_sleep(s32_t duration) { #ifdef CONFIG_MULTITHREADING u32_t expected_wakeup_time; s32_t ticks; __ASSERT(!z_is_in_isr(), ""); __ASSERT(duration != K_FOREVER, ""); K_DEBUG("thread %p for %d ns\n", _current, duration); /* wait of 0 ms is treated as a 'yield' */ if (duration == 0) { k_yield(); return 0; } ticks = _TICK_ALIGN + z_ms_to_ticks(duration); expected_wakeup_time = ticks + z_tick_get_32(); /* Spinlock purely for local interrupt locking to prevent us * from being interrupted while _current is in an intermediate * state. Should unify this implementation with pend(). */ struct k_spinlock local_lock = {}; k_spinlock_key_t key = k_spin_lock(&local_lock); #if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) pending_current = _current; #endif z_remove_thread_from_ready_q(_current); z_add_thread_timeout(_current, ticks); (void)z_swap(&local_lock, key); ticks = expected_wakeup_time - z_tick_get_32(); if (ticks > 0) { return __ticks_to_ms(ticks); } #endif return 0; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_sleep, duration) { /* FIXME there were some discussions recently on whether we should * relax this, thread would be unscheduled until k_wakeup issued */ Z_OOPS(Z_SYSCALL_VERIFY_MSG(duration != K_FOREVER, "sleeping forever not allowed")); return z_impl_k_sleep(duration); } #endif void z_impl_k_wakeup(k_tid_t thread) { if (z_is_thread_pending(thread)) { return; } if (z_abort_thread_timeout(thread) < 0) { return; } z_ready_thread(thread); if (!z_is_in_isr()) { z_reschedule_unlocked(); } if (IS_ENABLED(CONFIG_SMP) && !IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) { z_sched_ipi(); } } #ifdef CONFIG_SMP /* Called out of the scheduler interprocessor interrupt. All it does * is flag the current thread as dead if it needs to abort, so the ISR * return into something else and the other thread which called * k_thread_abort() can finish its work knowing the thing won't be * rescheduled. */ void z_sched_ipi(void) { LOCKED(&sched_spinlock) { if (_current->base.thread_state & _THREAD_ABORTING) { _current->base.thread_state |= _THREAD_DEAD; _current_cpu->swap_ok = true; } } } void z_sched_abort(struct k_thread *thread) { if (thread == _current) { z_remove_thread_from_ready_q(thread); return; } /* First broadcast an IPI to the other CPUs so they can stop * it locally. Not all architectures support that, alas. If * we don't have it, we need to wait for some other interrupt. */ thread->base.thread_state |= _THREAD_ABORTING; #ifdef CONFIG_SCHED_IPI_SUPPORTED z_arch_sched_ipi(); #endif /* Wait for it to be flagged dead either by the CPU it was * running on or because we caught it idle in the queue */ while ((thread->base.thread_state & _THREAD_DEAD) == 0) { LOCKED(&sched_spinlock) { if (z_is_thread_queued(thread)) { thread->base.thread_state |= _THREAD_DEAD; _priq_run_remove(&_kernel.ready_q.runq, thread); z_mark_thread_as_not_queued(thread); } } } } #endif #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_wakeup, K_OBJ_THREAD, k_tid_t); #endif k_tid_t z_impl_k_current_get(void) { return _current; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER0_SIMPLE(k_current_get); #endif int z_impl_k_is_preempt_thread(void) { return !z_is_in_isr() && is_preempt(_current); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER0_SIMPLE(k_is_preempt_thread); #endif #ifdef CONFIG_SCHED_CPU_MASK # ifdef CONFIG_SMP /* Right now we use a single byte for this mask */ BUILD_ASSERT_MSG(CONFIG_MP_NUM_CPUS <= 8, "Too many CPUs for mask word"); # endif static int cpu_mask_mod(k_tid_t t, u32_t enable_mask, u32_t disable_mask) { int ret = 0; LOCKED(&sched_spinlock) { if (z_is_thread_prevented_from_running(t)) { t->base.cpu_mask |= enable_mask; t->base.cpu_mask &= ~disable_mask; } else { ret = -EINVAL; } } return ret; } int k_thread_cpu_mask_clear(k_tid_t thread) { return cpu_mask_mod(thread, 0, 0xffffffff); } int k_thread_cpu_mask_enable_all(k_tid_t thread) { return cpu_mask_mod(thread, 0xffffffff, 0); } int k_thread_cpu_mask_enable(k_tid_t thread, int cpu) { return cpu_mask_mod(thread, BIT(cpu), 0); } int k_thread_cpu_mask_disable(k_tid_t thread, int cpu) { return cpu_mask_mod(thread, 0, BIT(cpu)); } #endif /* CONFIG_SCHED_CPU_MASK */