/* * Copyright (c) 2017 Google LLC. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT atmel_sam0_uart #include #include #include #include #include #include #include #include #ifndef SERCOM_USART_CTRLA_MODE_USART_INT_CLK #define SERCOM_USART_CTRLA_MODE_USART_INT_CLK SERCOM_USART_CTRLA_MODE(0x1) #endif /* Device constant configuration parameters */ struct uart_sam0_dev_cfg { SercomUsart *regs; uint32_t baudrate; uint32_t pads; #ifdef MCLK volatile uint32_t *mclk; uint32_t mclk_mask; uint16_t gclk_core_id; #else uint32_t pm_apbcmask; uint16_t gclk_clkctrl_id; #endif #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API void (*irq_config_func)(struct device *dev); #endif #if CONFIG_UART_ASYNC_API char *dma_dev; uint8_t tx_dma_request; uint8_t tx_dma_channel; uint8_t rx_dma_request; uint8_t rx_dma_channel; #endif }; /* Device run time data */ struct uart_sam0_dev_data { struct uart_config config_cache; #ifdef CONFIG_UART_INTERRUPT_DRIVEN uart_irq_callback_user_data_t cb; void *cb_data; #endif #if CONFIG_UART_ASYNC_API const struct uart_sam0_dev_cfg *cfg; struct device *dma; uart_callback_t async_cb; void *async_cb_data; struct k_delayed_work tx_timeout_work; const uint8_t *tx_buf; size_t tx_len; struct k_delayed_work rx_timeout_work; size_t rx_timeout_time; size_t rx_timeout_chunk; uint32_t rx_timeout_start; uint8_t *rx_buf; size_t rx_len; size_t rx_processed_len; uint8_t *rx_next_buf; size_t rx_next_len; bool rx_waiting_for_irq; bool rx_timeout_from_isr; #endif }; #define DEV_CFG(dev) \ ((const struct uart_sam0_dev_cfg *const)(dev)->config_info) #define DEV_DATA(dev) ((struct uart_sam0_dev_data * const)(dev)->driver_data) static void wait_synchronization(SercomUsart *const usart) { #if defined(SERCOM_USART_SYNCBUSY_MASK) /* SYNCBUSY is a register */ while ((usart->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_MASK) != 0) { } #elif defined(SERCOM_USART_STATUS_SYNCBUSY) /* SYNCBUSY is a bit */ while ((usart->STATUS.reg & SERCOM_USART_STATUS_SYNCBUSY) != 0) { } #else #error Unsupported device #endif } static int uart_sam0_set_baudrate(SercomUsart *const usart, uint32_t baudrate, uint32_t clk_freq_hz) { uint64_t tmp; uint16_t baud; tmp = (uint64_t)baudrate << 20; tmp = (tmp + (clk_freq_hz >> 1)) / clk_freq_hz; /* Verify that the calculated result is within range */ if (tmp < 1 || tmp > UINT16_MAX) { return -ERANGE; } baud = 65536 - (uint16_t)tmp; usart->BAUD.reg = baud; wait_synchronization(usart); return 0; } #if CONFIG_UART_ASYNC_API static void uart_sam0_dma_tx_done(void *arg, uint32_t id, int error_code) { ARG_UNUSED(id); ARG_UNUSED(error_code); struct device *dev = arg; struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); k_delayed_work_cancel(&dev_data->tx_timeout_work); int key = irq_lock(); struct uart_event evt = { .type = UART_TX_DONE, .data.tx = { .buf = dev_data->tx_buf, .len = dev_data->tx_len, }, }; dev_data->tx_buf = NULL; dev_data->tx_len = 0U; if (evt.data.tx.len != 0U && dev_data->async_cb) { dev_data->async_cb(&evt, dev_data->async_cb_data); } irq_unlock(key); } static int uart_sam0_tx_halt(struct uart_sam0_dev_data *dev_data) { const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg; int key = irq_lock(); size_t tx_active = dev_data->tx_len; struct dma_status st; struct uart_event evt = { .type = UART_TX_ABORTED, .data.tx = { .buf = dev_data->tx_buf, .len = 0U, }, }; dev_data->tx_buf = NULL; dev_data->tx_len = 0U; dma_stop(dev_data->dma, cfg->tx_dma_channel); irq_unlock(key); if (dma_get_status(dev_data->dma, cfg->tx_dma_channel, &st) == 0) { evt.data.tx.len = tx_active - st.pending_length; } if (tx_active) { if (dev_data->async_cb) { dev_data->async_cb(&evt, dev_data->async_cb_data); } } else { return -EINVAL; } return 0; } static void uart_sam0_tx_timeout(struct k_work *work) { struct uart_sam0_dev_data *dev_data = CONTAINER_OF(work, struct uart_sam0_dev_data, tx_timeout_work); uart_sam0_tx_halt(dev_data); } static void uart_sam0_notify_rx_processed(struct uart_sam0_dev_data *dev_data, size_t processed) { if (!dev_data->async_cb) { return; } if (dev_data->rx_processed_len == processed) { return; } struct uart_event evt = { .type = UART_RX_RDY, .data.rx = { .buf = dev_data->rx_buf, .offset = dev_data->rx_processed_len, .len = processed - dev_data->rx_processed_len, }, }; dev_data->rx_processed_len = processed; dev_data->async_cb(&evt, dev_data->async_cb_data); } static void uart_sam0_dma_rx_done(void *arg, uint32_t id, int error_code) { ARG_UNUSED(id); ARG_UNUSED(error_code); struct device *dev = arg; struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg; SercomUsart * const regs = cfg->regs; int key = irq_lock(); if (dev_data->rx_len == 0U) { irq_unlock(key); return; } uart_sam0_notify_rx_processed(dev_data, dev_data->rx_len); if (dev_data->async_cb) { struct uart_event evt = { .type = UART_RX_BUF_RELEASED, .data.rx_buf = { .buf = dev_data->rx_buf, }, }; dev_data->async_cb(&evt, dev_data->async_cb_data); } /* No next buffer, so end the transfer */ if (!dev_data->rx_next_len) { dev_data->rx_buf = NULL; dev_data->rx_len = 0U; if (dev_data->async_cb) { struct uart_event evt = { .type = UART_RX_DISABLED, }; dev_data->async_cb(&evt, dev_data->async_cb_data); } irq_unlock(key); return; } dev_data->rx_buf = dev_data->rx_next_buf; dev_data->rx_len = dev_data->rx_next_len; dev_data->rx_next_buf = NULL; dev_data->rx_next_len = 0U; dev_data->rx_processed_len = 0U; dma_reload(dev_data->dma, cfg->rx_dma_channel, (uint32_t)(&(regs->DATA.reg)), (uint32_t)dev_data->rx_buf, dev_data->rx_len); /* * If there should be a timeout, handle starting the DMA in the * ISR, since reception resets it and DMA completion implies * reception. This also catches the case of DMA completion during * timeout handling. */ if (dev_data->rx_timeout_time != SYS_FOREVER_MS) { dev_data->rx_waiting_for_irq = true; regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC; irq_unlock(key); return; } /* Otherwise, start the transfer immediately. */ dma_start(dev_data->dma, cfg->rx_dma_channel); struct uart_event evt = { .type = UART_RX_BUF_REQUEST, }; dev_data->async_cb(&evt, dev_data->async_cb_data); irq_unlock(key); } static void uart_sam0_rx_timeout(struct k_work *work) { struct uart_sam0_dev_data *dev_data = CONTAINER_OF(work, struct uart_sam0_dev_data, rx_timeout_work); const struct uart_sam0_dev_cfg *const cfg = dev_data->cfg; SercomUsart * const regs = cfg->regs; struct dma_status st; int key = irq_lock(); if (dev_data->rx_len == 0U) { irq_unlock(key); return; } /* * Stop the DMA transfer and restart the interrupt read * component (so the timeout restarts if there's still data). * However, just ignore it if the transfer has completed (nothing * pending) that means the DMA ISR is already pending, so just let * it handle things instead when we re-enable IRQs. */ dma_stop(dev_data->dma, cfg->rx_dma_channel); if (dma_get_status(dev_data->dma, cfg->rx_dma_channel, &st) == 0 && st.pending_length == 0U) { irq_unlock(key); return; } uint8_t *rx_dma_start = dev_data->rx_buf + dev_data->rx_len - st.pending_length; size_t rx_processed = rx_dma_start - dev_data->rx_buf; /* * We know we still have space, since the above will catch the * empty buffer, so always restart the transfer. */ dma_reload(dev_data->dma, cfg->rx_dma_channel, (uint32_t)(&(regs->DATA.reg)), (uint32_t)rx_dma_start, dev_data->rx_len - rx_processed); dev_data->rx_waiting_for_irq = true; regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC; /* * Never do a notify on a timeout started from the ISR: timing * granularity means the first timeout can be in the middle * of reception but still have the total elapsed time exhausted. * So we require a timeout chunk with no data seen at all * (i.e. no ISR entry). */ if (dev_data->rx_timeout_from_isr) { dev_data->rx_timeout_from_isr = false; k_delayed_work_submit(&dev_data->rx_timeout_work, K_MSEC(dev_data->rx_timeout_chunk)); irq_unlock(key); return; } uint32_t now = k_uptime_get_32(); uint32_t elapsed = now - dev_data->rx_timeout_start; if (elapsed >= dev_data->rx_timeout_time) { /* * No time left, so call the handler, and let the ISR * restart the timeout when it sees data. */ uart_sam0_notify_rx_processed(dev_data, rx_processed); } else { /* * Still have time left, so start another timeout. */ uint32_t remaining = MIN(dev_data->rx_timeout_time - elapsed, dev_data->rx_timeout_chunk); k_delayed_work_submit(&dev_data->rx_timeout_work, K_MSEC(remaining)); } irq_unlock(key); } #endif static int uart_sam0_configure(struct device *dev, const struct uart_config *new_cfg) { int retval; const struct uart_sam0_dev_cfg *const cfg = DEV_CFG(dev); struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); SercomUsart * const usart = cfg->regs; wait_synchronization(usart); usart->CTRLA.bit.ENABLE = 0; wait_synchronization(usart); if (new_cfg->flow_ctrl != UART_CFG_FLOW_CTRL_NONE) { /* Flow control not yet supported though in principle possible * on this soc family. */ return -ENOTSUP; } dev_data->config_cache.flow_ctrl = new_cfg->flow_ctrl; SERCOM_USART_CTRLA_Type CTRLA_temp = usart->CTRLA; SERCOM_USART_CTRLB_Type CTRLB_temp = usart->CTRLB; switch (new_cfg->parity) { case UART_CFG_PARITY_NONE: CTRLA_temp.bit.FORM = 0x0; break; case UART_CFG_PARITY_ODD: CTRLA_temp.bit.FORM = 0x1; CTRLB_temp.bit.PMODE = 1; break; case UART_CFG_PARITY_EVEN: CTRLA_temp.bit.FORM = 0x1; CTRLB_temp.bit.PMODE = 0; break; default: return -ENOTSUP; } dev_data->config_cache.parity = new_cfg->parity; switch (new_cfg->stop_bits) { case UART_CFG_STOP_BITS_1: CTRLB_temp.bit.SBMODE = 0; break; case UART_CFG_STOP_BITS_2: CTRLB_temp.bit.SBMODE = 1; break; default: return -ENOTSUP; } dev_data->config_cache.stop_bits = new_cfg->stop_bits; switch (new_cfg->data_bits) { case UART_CFG_DATA_BITS_5: CTRLB_temp.bit.CHSIZE = 0x5; break; case UART_CFG_DATA_BITS_6: CTRLB_temp.bit.CHSIZE = 0x6; break; case UART_CFG_DATA_BITS_7: CTRLB_temp.bit.CHSIZE = 0x7; break; case UART_CFG_DATA_BITS_8: CTRLB_temp.bit.CHSIZE = 0x0; break; case UART_CFG_DATA_BITS_9: CTRLB_temp.bit.CHSIZE = 0x1; break; default: return -ENOTSUP; } dev_data->config_cache.data_bits = new_cfg->data_bits; usart->CTRLA = CTRLA_temp; wait_synchronization(usart); usart->CTRLB = CTRLB_temp; wait_synchronization(usart); retval = uart_sam0_set_baudrate(usart, new_cfg->baudrate, SOC_ATMEL_SAM0_GCLK0_FREQ_HZ); if (retval != 0) { return retval; } dev_data->config_cache.baudrate = new_cfg->baudrate; usart->CTRLA.bit.ENABLE = 1; wait_synchronization(usart); return 0; } static int uart_sam0_config_get(struct device *dev, struct uart_config *out_cfg) { struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); memcpy(out_cfg, &(dev_data->config_cache), sizeof(dev_data->config_cache)); return 0; } static int uart_sam0_init(struct device *dev) { int retval; const struct uart_sam0_dev_cfg *const cfg = DEV_CFG(dev); struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); SercomUsart *const usart = cfg->regs; #ifdef MCLK /* Enable the GCLK */ GCLK->PCHCTRL[cfg->gclk_core_id].reg = GCLK_PCHCTRL_GEN_GCLK0 | GCLK_PCHCTRL_CHEN; /* Enable SERCOM clock in MCLK */ *cfg->mclk |= cfg->mclk_mask; #else /* Enable the GCLK */ GCLK->CLKCTRL.reg = cfg->gclk_clkctrl_id | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_CLKEN; /* Enable SERCOM clock in PM */ PM->APBCMASK.reg |= cfg->pm_apbcmask; #endif /* Disable all USART interrupts */ usart->INTENCLR.reg = SERCOM_USART_INTENCLR_MASK; wait_synchronization(usart); /* 8 bits of data, no parity, 1 stop bit in normal mode */ usart->CTRLA.reg = cfg->pads /* Internal clock */ | SERCOM_USART_CTRLA_MODE_USART_INT_CLK #if defined(SERCOM_USART_CTRLA_SAMPR) /* 16x oversampling with arithmetic baud rate generation */ | SERCOM_USART_CTRLA_SAMPR(0) #endif | SERCOM_USART_CTRLA_FORM(0) | SERCOM_USART_CTRLA_CPOL | SERCOM_USART_CTRLA_DORD; wait_synchronization(usart); dev_data->config_cache.flow_ctrl = UART_CFG_FLOW_CTRL_NONE; dev_data->config_cache.parity = UART_CFG_PARITY_NONE; dev_data->config_cache.stop_bits = UART_CFG_STOP_BITS_1; dev_data->config_cache.data_bits = UART_CFG_DATA_BITS_8; /* Enable receiver and transmitter */ usart->CTRLB.reg = SERCOM_USART_CTRLB_CHSIZE(0) | SERCOM_USART_CTRLB_RXEN | SERCOM_USART_CTRLB_TXEN; wait_synchronization(usart); retval = uart_sam0_set_baudrate(usart, cfg->baudrate, SOC_ATMEL_SAM0_GCLK0_FREQ_HZ); if (retval != 0) { return retval; } dev_data->config_cache.data_bits = cfg->baudrate; #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API cfg->irq_config_func(dev); #endif #ifdef CONFIG_UART_ASYNC_API dev_data->cfg = cfg; dev_data->dma = device_get_binding(cfg->dma_dev); k_delayed_work_init(&dev_data->tx_timeout_work, uart_sam0_tx_timeout); k_delayed_work_init(&dev_data->rx_timeout_work, uart_sam0_rx_timeout); if (cfg->tx_dma_channel != 0xFFU) { struct dma_config dma_cfg = { 0 }; struct dma_block_config dma_blk = { 0 }; if (!dev_data->dma) { return -ENOTSUP; } dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL; dma_cfg.source_data_size = 1; dma_cfg.dest_data_size = 1; dma_cfg.callback_arg = dev; dma_cfg.dma_callback = uart_sam0_dma_tx_done; dma_cfg.block_count = 1; dma_cfg.head_block = &dma_blk; dma_cfg.dma_slot = cfg->tx_dma_request; dma_blk.block_size = 1; dma_blk.dest_address = (uint32_t)(&(usart->DATA.reg)); dma_blk.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; retval = dma_config(dev_data->dma, cfg->tx_dma_channel, &dma_cfg); if (retval != 0) { return retval; } } if (cfg->rx_dma_channel != 0xFFU) { struct dma_config dma_cfg = { 0 }; struct dma_block_config dma_blk = { 0 }; if (!dev_data->dma) { return -ENOTSUP; } dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY; dma_cfg.source_data_size = 1; dma_cfg.dest_data_size = 1; dma_cfg.callback_arg = dev; dma_cfg.dma_callback = uart_sam0_dma_rx_done; dma_cfg.block_count = 1; dma_cfg.head_block = &dma_blk; dma_cfg.dma_slot = cfg->rx_dma_request; dma_blk.block_size = 1; dma_blk.source_address = (uint32_t)(&(usart->DATA.reg)); dma_blk.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; retval = dma_config(dev_data->dma, cfg->rx_dma_channel, &dma_cfg); if (retval != 0) { return retval; } } #endif usart->CTRLA.bit.ENABLE = 1; wait_synchronization(usart); return 0; } static int uart_sam0_poll_in(struct device *dev, unsigned char *c) { SercomUsart *const usart = DEV_CFG(dev)->regs; if (!usart->INTFLAG.bit.RXC) { return -EBUSY; } *c = (unsigned char)usart->DATA.reg; return 0; } static void uart_sam0_poll_out(struct device *dev, unsigned char c) { SercomUsart *const usart = DEV_CFG(dev)->regs; while (!usart->INTFLAG.bit.DRE) { } /* send a character */ usart->DATA.reg = c; } #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API static void uart_sam0_isr(void *arg) { struct device *dev = arg; struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); #if CONFIG_UART_INTERRUPT_DRIVEN if (dev_data->cb) { dev_data->cb(dev_data->cb_data); } #endif #if CONFIG_UART_ASYNC_API const struct uart_sam0_dev_cfg *const cfg = DEV_CFG(dev); SercomUsart * const regs = cfg->regs; if (dev_data->rx_len && regs->INTFLAG.bit.RXC && dev_data->rx_waiting_for_irq) { dev_data->rx_waiting_for_irq = false; regs->INTENCLR.reg = SERCOM_USART_INTENCLR_RXC; /* Receive started, so request the next buffer */ if (dev_data->rx_next_len == 0U && dev_data->async_cb) { struct uart_event evt = { .type = UART_RX_BUF_REQUEST, }; dev_data->async_cb(&evt, dev_data->async_cb_data); } /* * If we have a timeout, restart the time remaining whenever * we see data. */ if (dev_data->rx_timeout_time != SYS_FOREVER_MS) { dev_data->rx_timeout_from_isr = true; dev_data->rx_timeout_start = k_uptime_get_32(); k_delayed_work_submit(&dev_data->rx_timeout_work, K_MSEC(dev_data->rx_timeout_chunk)); } /* DMA will read the currently ready byte out */ dma_start(dev_data->dma, cfg->rx_dma_channel); } #endif } #endif #if CONFIG_UART_INTERRUPT_DRIVEN static int uart_sam0_fifo_fill(struct device *dev, const uint8_t *tx_data, int len) { SercomUsart *regs = DEV_CFG(dev)->regs; if (regs->INTFLAG.bit.DRE && len >= 1) { regs->DATA.reg = tx_data[0]; return 1; } else { return 0; } } static void uart_sam0_irq_tx_enable(struct device *dev) { SercomUsart *regs = DEV_CFG(dev)->regs; regs->INTENSET.reg = SERCOM_USART_INTENCLR_DRE; } static void uart_sam0_irq_tx_disable(struct device *dev) { SercomUsart *const regs = DEV_CFG(dev)->regs; regs->INTENCLR.reg = SERCOM_USART_INTENCLR_DRE; } static int uart_sam0_irq_tx_ready(struct device *dev) { SercomUsart *const regs = DEV_CFG(dev)->regs; return regs->INTFLAG.bit.DRE != 0; } static void uart_sam0_irq_rx_enable(struct device *dev) { SercomUsart *const regs = DEV_CFG(dev)->regs; regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC; } static void uart_sam0_irq_rx_disable(struct device *dev) { SercomUsart *const regs = DEV_CFG(dev)->regs; regs->INTENCLR.reg = SERCOM_USART_INTENCLR_RXC; } static int uart_sam0_irq_rx_ready(struct device *dev) { SercomUsart *const regs = DEV_CFG(dev)->regs; return regs->INTFLAG.bit.RXC != 0; } static int uart_sam0_fifo_read(struct device *dev, uint8_t *rx_data, const int size) { SercomUsart *const regs = DEV_CFG(dev)->regs; if (regs->INTFLAG.bit.RXC) { uint8_t ch = regs->DATA.reg; if (size >= 1) { *rx_data = ch; return 1; } else { return -EINVAL; } } return 0; } static int uart_sam0_irq_is_pending(struct device *dev) { SercomUsart *const regs = DEV_CFG(dev)->regs; return (regs->INTENSET.reg & regs->INTFLAG.reg) != 0; } static int uart_sam0_irq_update(struct device *dev) { return 1; } static void uart_sam0_irq_callback_set(struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); dev_data->cb = cb; dev_data->cb_data = cb_data; } #endif #ifdef CONFIG_UART_ASYNC_API static int uart_sam0_callback_set(struct device *dev, uart_callback_t callback, void *user_data) { struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); dev_data->async_cb = callback; dev_data->async_cb_data = user_data; return 0; } static int uart_sam0_tx(struct device *dev, const uint8_t *buf, size_t len, int32_t timeout) { struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); const struct uart_sam0_dev_cfg *const cfg = DEV_CFG(dev); SercomUsart *regs = DEV_CFG(dev)->regs; int retval; if (!dev_data->dma || cfg->tx_dma_channel == 0xFFU) { return -ENOTSUP; } if (len > 0xFFFFU) { return -EINVAL; } int key = irq_lock(); if (dev_data->tx_len != 0U) { retval = -EBUSY; goto err; } dev_data->tx_buf = buf; dev_data->tx_len = len; irq_unlock(key); retval = dma_reload(dev_data->dma, cfg->tx_dma_channel, (uint32_t)buf, (uint32_t)(&(regs->DATA.reg)), len); if (retval != 0U) { return retval; } if (timeout != SYS_FOREVER_MS) { k_delayed_work_submit(&dev_data->tx_timeout_work, K_MSEC(timeout)); } return dma_start(dev_data->dma, cfg->tx_dma_channel); err: irq_unlock(key); return retval; } static int uart_sam0_tx_abort(struct device *dev) { struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); const struct uart_sam0_dev_cfg *const cfg = DEV_CFG(dev); if (!dev_data->dma || cfg->tx_dma_channel == 0xFFU) { return -ENOTSUP; } k_delayed_work_cancel(&dev_data->tx_timeout_work); return uart_sam0_tx_halt(dev_data); } static int uart_sam0_rx_enable(struct device *dev, uint8_t *buf, size_t len, int32_t timeout) { struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); const struct uart_sam0_dev_cfg *const cfg = DEV_CFG(dev); SercomUsart *regs = DEV_CFG(dev)->regs; int retval; if (!dev_data->dma || cfg->rx_dma_channel == 0xFFU) { return -ENOTSUP; } if (len > 0xFFFFU) { return -EINVAL; } int key = irq_lock(); if (dev_data->rx_len != 0U) { retval = -EBUSY; goto err; } /* Read off anything that was already there */ while (regs->INTFLAG.bit.RXC) { char discard = regs->DATA.reg; (void)discard; } retval = dma_reload(dev_data->dma, cfg->rx_dma_channel, (uint32_t)(&(regs->DATA.reg)), (uint32_t)buf, len); if (retval != 0) { return retval; } dev_data->rx_buf = buf; dev_data->rx_len = len; dev_data->rx_processed_len = 0U; dev_data->rx_waiting_for_irq = true; dev_data->rx_timeout_from_isr = true; dev_data->rx_timeout_time = timeout; dev_data->rx_timeout_chunk = MAX(timeout / 4U, 1); regs->INTENSET.reg = SERCOM_USART_INTENSET_RXC; irq_unlock(key); return 0; err: irq_unlock(key); return retval; } static int uart_sam0_rx_buf_rsp(struct device *dev, uint8_t *buf, size_t len) { if (len > 0xFFFFU) { return -EINVAL; } struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); int key = irq_lock(); int retval = 0; if (dev_data->rx_len == 0U) { retval = -EACCES; goto err; } if (dev_data->rx_next_len != 0U) { retval = -EBUSY; goto err; } dev_data->rx_next_buf = buf; dev_data->rx_next_len = len; irq_unlock(key); return 0; err: irq_unlock(key); return retval; } static int uart_sam0_rx_disable(struct device *dev) { struct uart_sam0_dev_data *const dev_data = DEV_DATA(dev); const struct uart_sam0_dev_cfg *const cfg = DEV_CFG(dev); SercomUsart *const regs = cfg->regs; struct dma_status st; k_delayed_work_cancel(&dev_data->rx_timeout_work); int key = irq_lock(); if (dev_data->rx_len == 0U) { irq_unlock(key); return -EINVAL; } regs->INTENCLR.reg = SERCOM_USART_INTENCLR_RXC; dma_stop(dev_data->dma, cfg->rx_dma_channel); if (dev_data->rx_next_len) { struct uart_event evt = { .type = UART_RX_BUF_RELEASED, .data.rx_buf = { .buf = dev_data->rx_next_buf, }, }; dev_data->rx_next_buf = NULL; dev_data->rx_next_len = 0U; if (dev_data->async_cb) { dev_data->async_cb(&evt, dev_data->async_cb_data); } } if (dma_get_status(dev_data->dma, cfg->rx_dma_channel, &st) == 0 && st.pending_length != 0U) { size_t rx_processed = dev_data->rx_len - st.pending_length; uart_sam0_notify_rx_processed(dev_data, rx_processed); } struct uart_event evt = { .type = UART_RX_BUF_RELEASED, .data.rx_buf = { .buf = dev_data->rx_buf, }, }; dev_data->rx_buf = NULL; dev_data->rx_len = 0U; if (dev_data->async_cb) { dev_data->async_cb(&evt, dev_data->async_cb_data); } evt.type = UART_RX_DISABLED; if (dev_data->async_cb) { dev_data->async_cb(&evt, dev_data->async_cb_data); } irq_unlock(key); return 0; } #endif static const struct uart_driver_api uart_sam0_driver_api = { .poll_in = uart_sam0_poll_in, .poll_out = uart_sam0_poll_out, .configure = uart_sam0_configure, .config_get = uart_sam0_config_get, #if CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_sam0_fifo_fill, .fifo_read = uart_sam0_fifo_read, .irq_tx_enable = uart_sam0_irq_tx_enable, .irq_tx_disable = uart_sam0_irq_tx_disable, .irq_tx_ready = uart_sam0_irq_tx_ready, .irq_rx_enable = uart_sam0_irq_rx_enable, .irq_rx_disable = uart_sam0_irq_rx_disable, .irq_rx_ready = uart_sam0_irq_rx_ready, .irq_is_pending = uart_sam0_irq_is_pending, .irq_update = uart_sam0_irq_update, .irq_callback_set = uart_sam0_irq_callback_set, #endif #if CONFIG_UART_ASYNC_API .callback_set = uart_sam0_callback_set, .tx = uart_sam0_tx, .tx_abort = uart_sam0_tx_abort, .rx_enable = uart_sam0_rx_enable, .rx_buf_rsp = uart_sam0_rx_buf_rsp, .rx_disable = uart_sam0_rx_disable, #endif }; #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API #define SAM0_UART_IRQ_CONNECT(n, m) \ do { \ IRQ_CONNECT(DT_INST_IRQ_BY_IDX(n, m, irq), \ DT_INST_IRQ_BY_IDX(n, m, priority), \ uart_sam0_isr, \ DEVICE_GET(uart_sam0_##n), 0); \ irq_enable(DT_INST_IRQ_BY_IDX(n, m, irq)); \ } while (0) #define UART_SAM0_IRQ_HANDLER_DECL(n) \ static void uart_sam0_irq_config_##n(struct device *dev) #define UART_SAM0_IRQ_HANDLER_FUNC(n) \ .irq_config_func = uart_sam0_irq_config_##n, #if DT_INST_IRQ_HAS_IDX(0, 3) #define UART_SAM0_IRQ_HANDLER(n) \ static void uart_sam0_irq_config_##n(struct device *dev) \ { \ SAM0_UART_IRQ_CONNECT(n, 0); \ SAM0_UART_IRQ_CONNECT(n, 1); \ SAM0_UART_IRQ_CONNECT(n, 2); \ SAM0_UART_IRQ_CONNECT(n, 3); \ } #else #define UART_SAM0_IRQ_HANDLER(n) \ static void uart_sam0_irq_config_##n(struct device *dev) \ { \ SAM0_UART_IRQ_CONNECT(n, 0); \ } #endif #else #define UART_SAM0_IRQ_HANDLER_DECL(n) #define UART_SAM0_IRQ_HANDLER_FUNC(n) #define UART_SAM0_IRQ_HANDLER(n) #endif #if CONFIG_UART_ASYNC_API #define UART_SAM0_DMA_CHANNELS(n) \ .dma_dev = ATMEL_SAM0_DT_INST_DMA_NAME(n, tx), \ .tx_dma_request = ATMEL_SAM0_DT_INST_DMA_TRIGSRC(n, tx), \ .tx_dma_channel = ATMEL_SAM0_DT_INST_DMA_CHANNEL(n, tx), \ .rx_dma_request = ATMEL_SAM0_DT_INST_DMA_TRIGSRC(n, rx), \ .rx_dma_channel = ATMEL_SAM0_DT_INST_DMA_CHANNEL(n, rx), #else #define UART_SAM0_DMA_CHANNELS(n) #endif #define UART_SAM0_SERCOM_PADS(n) \ (DT_INST_PROP(n, rxpo) << SERCOM_USART_CTRLA_RXPO_Pos) | \ (DT_INST_PROP(n, txpo) << SERCOM_USART_CTRLA_TXPO_Pos) #ifdef MCLK #define UART_SAM0_CONFIG_DEFN(n) \ static const struct uart_sam0_dev_cfg uart_sam0_config_##n = { \ .regs = (SercomUsart *)DT_INST_REG_ADDR(n), \ .baudrate = DT_INST_PROP(n, current_speed), \ .mclk = (volatile uint32_t *)MCLK_MASK_DT_INT_REG_ADDR(n), \ .mclk_mask = BIT(DT_INST_CLOCKS_CELL_BY_NAME(n, mclk, bit)), \ .gclk_core_id = DT_INST_CLOCKS_CELL_BY_NAME(n, gclk, periph_ch),\ .pads = UART_SAM0_SERCOM_PADS(n), \ UART_SAM0_IRQ_HANDLER_FUNC(n) \ UART_SAM0_DMA_CHANNELS(n) \ } #else #define UART_SAM0_CONFIG_DEFN(n) \ static const struct uart_sam0_dev_cfg uart_sam0_config_##n = { \ .regs = (SercomUsart *)DT_INST_REG_ADDR(n), \ .baudrate = DT_INST_PROP(n, current_speed), \ .pm_apbcmask = BIT(DT_INST_CLOCKS_CELL_BY_NAME(n, pm, bit)), \ .gclk_clkctrl_id = DT_INST_CLOCKS_CELL_BY_NAME(n, gclk, clkctrl_id),\ .pads = UART_SAM0_SERCOM_PADS(n), \ UART_SAM0_IRQ_HANDLER_FUNC(n) \ UART_SAM0_DMA_CHANNELS(n) \ } #endif #define UART_SAM0_DEVICE_INIT(n) \ static struct uart_sam0_dev_data uart_sam0_data_##n; \ UART_SAM0_IRQ_HANDLER_DECL(n); \ UART_SAM0_CONFIG_DEFN(n); \ DEVICE_AND_API_INIT(uart_sam0_##n, DT_INST_LABEL(n), \ uart_sam0_init, &uart_sam0_data_##n, \ &uart_sam0_config_##n, PRE_KERNEL_1, \ CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \ &uart_sam0_driver_api); \ UART_SAM0_IRQ_HANDLER(n) DT_INST_FOREACH_STATUS_OKAY(UART_SAM0_DEVICE_INIT)