/* * Copyright (c) 2014-2015 Wind River Systems, Inc. * Copyright (c) 2018 Synopsys Inc, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include /* * note: This implementation assumes Timer0 is present. Be sure * to build the ARC CPU with Timer0. * * If secureshield is present and secure firmware is configured, * use secure Timer 0 */ #ifdef CONFIG_ARC_SECURE_FIRMWARE #undef _ARC_V2_TMR0_COUNT #undef _ARC_V2_TMR0_CONTROL #undef _ARC_V2_TMR0_LIMIT #undef IRQ_TIMER0 #define _ARC_V2_TMR0_COUNT _ARC_V2_S_TMR0_COUNT #define _ARC_V2_TMR0_CONTROL _ARC_V2_S_TMR0_CONTROL #define _ARC_V2_TMR0_LIMIT _ARC_V2_S_TMR0_LIMIT #define IRQ_TIMER0 IRQ_SEC_TIMER0 #endif #define _ARC_V2_TMR_CTRL_IE 0x1 /* interrupt enable */ #define _ARC_V2_TMR_CTRL_NH 0x2 /* count only while not halted */ #define _ARC_V2_TMR_CTRL_W 0x4 /* watchdog mode enable */ #define _ARC_V2_TMR_CTRL_IP 0x8 /* interrupt pending flag */ /* Minimum cycles in the future to try to program. */ #define MIN_DELAY 512 #define COUNTER_MAX 0xffffffff #define TIMER_STOPPED 0x0 #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1) #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK) #define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) static struct k_spinlock lock; #ifdef CONFIG_SMP volatile static u64_t last_time; volatile static u64_t start_time; #else static u32_t last_load; static u32_t cycle_count; #endif /** * * @brief Get contents of Timer0 count register * * @return Current Timer0 count */ static ALWAYS_INLINE u32_t timer0_count_register_get(void) { return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_COUNT); } /** * * @brief Set Timer0 count register to the specified value * * @return N/A */ static ALWAYS_INLINE void timer0_count_register_set(u32_t value) { z_arc_v2_aux_reg_write(_ARC_V2_TMR0_COUNT, value); } /** * * @brief Get contents of Timer0 control register * * @return N/A */ static ALWAYS_INLINE u32_t timer0_control_register_get(void) { return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_CONTROL); } /** * * @brief Set Timer0 control register to the specified value * * @return N/A */ static ALWAYS_INLINE void timer0_control_register_set(u32_t value) { z_arc_v2_aux_reg_write(_ARC_V2_TMR0_CONTROL, value); } /** * * @brief Get contents of Timer0 limit register * * @return N/A */ static ALWAYS_INLINE u32_t timer0_limit_register_get(void) { return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_LIMIT); } /** * * @brief Set Timer0 limit register to the specified value * * @return N/A */ static ALWAYS_INLINE void timer0_limit_register_set(u32_t count) { z_arc_v2_aux_reg_write(_ARC_V2_TMR0_LIMIT, count); } #ifndef CONFIG_SMP static u32_t elapsed(void) { u32_t val, ov, ctrl; do { val = timer0_count_register_get(); ctrl = timer0_control_register_get(); } while (timer0_count_register_get() < val); ov = (ctrl & _ARC_V2_TMR_CTRL_IP) ? last_load : 0; return val + ov; } #endif /** * * @brief System clock periodic tick handler * * This routine handles the system clock tick interrupt. It always * announces one tick when TICKLESS is not enabled, or multiple ticks * when TICKLESS is enabled. * * @return N/A */ static void timer_int_handler(void *unused) { ARG_UNUSED(unused); u32_t dticks; /* clear the interrupt by writing 0 to IP bit of the control register */ timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); #ifdef CONFIG_SMP u64_t curr_time; k_spinlock_key_t key; key = k_spin_lock(&lock); /* gfrc is the wall clock */ curr_time = z_arc_connect_gfrc_read(); dticks = (curr_time - last_time) / CYC_PER_TICK; last_time = curr_time; k_spin_unlock(&lock, key); z_clock_announce(dticks); #else cycle_count += last_load; dticks = last_load / CYC_PER_TICK; z_clock_announce(TICKLESS ? dticks : 1); #endif } /** * * @brief Initialize and enable the system clock * * This routine is used to program the ARCv2 timer to deliver interrupts at the * rate specified via the CYC_PER_TICK. * * @return 0 */ int z_clock_driver_init(struct device *device) { ARG_UNUSED(device); /* ensure that the timer will not generate interrupts */ timer0_control_register_set(0); #ifdef CONFIG_SMP IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, timer_int_handler, NULL, 0); timer0_limit_register_set(CYC_PER_TICK - 1); last_time = z_arc_connect_gfrc_read(); start_time = last_time; #else last_load = CYC_PER_TICK; IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, timer_int_handler, NULL, 0); timer0_limit_register_set(last_load - 1); #ifdef CONFIG_BOOT_TIME_MEASUREMENT cycle_count = timer0_count_register_get(); #endif #endif timer0_count_register_set(0); timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); /* everything has been configured: safe to enable the interrupt */ irq_enable(IRQ_TIMER0); return 0; } void z_clock_set_timeout(s32_t ticks, bool idle) { /* If the kernel allows us to miss tick announcements in idle, * then shut off the counter. (Note: we can assume if idle==true * that interrupts are already disabled) */ #ifdef CONFIG_SMP if (IS_ENABLED(CONFIG_TICKLESS_IDLE) && idle && ticks == K_FOREVER) { timer0_control_register_set(0); timer0_count_register_set(0); timer0_limit_register_set(0); return; } #if defined(CONFIG_TICKLESS_KERNEL) u32_t delay; u32_t key; ticks = MIN(MAX_TICKS, MAX(ticks - 1, 0)); /* Desired delay in the future */ delay = (ticks == 0) ? CYC_PER_TICK : ticks * CYC_PER_TICK; key = arch_irq_lock(); timer0_limit_register_set(delay - 1); timer0_count_register_set(0); timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); arch_irq_unlock(key); #endif #else if (IS_ENABLED(CONFIG_TICKLESS_IDLE) && idle && ticks == K_FOREVER) { timer0_control_register_set(0); timer0_count_register_set(0); timer0_limit_register_set(0); last_load = TIMER_STOPPED; return; } #if defined(CONFIG_TICKLESS_KERNEL) u32_t delay; ticks = MIN(MAX_TICKS, MAX(ticks - 1, 0)); /* Desired delay in the future */ delay = (ticks == 0) ? MIN_DELAY : ticks * CYC_PER_TICK; k_spinlock_key_t key = k_spin_lock(&lock); delay += elapsed(); /* Round delay up to next tick boundary */ delay = ((delay + CYC_PER_TICK - 1) / CYC_PER_TICK) * CYC_PER_TICK; if (last_load != delay) { if (timer0_control_register_get() & _ARC_V2_TMR_CTRL_IP) { delay -= last_load; } timer0_limit_register_set(delay - 1); last_load = delay; timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); } k_spin_unlock(&lock, key); #endif #endif } u32_t z_clock_elapsed(void) { if (!TICKLESS) { return 0; } u32_t cyc; k_spinlock_key_t key = k_spin_lock(&lock); #ifdef CONFIG_SMP cyc = (z_arc_connect_gfrc_read() - last_time) / CYC_PER_TICK; #else cyc = elapsed() / CYC_PER_TICK; #endif k_spin_unlock(&lock, key); return cyc; } u32_t z_timer_cycle_get_32(void) { #ifdef CONFIG_SMP return z_arc_connect_gfrc_read() - start_time; #else k_spinlock_key_t key = k_spin_lock(&lock); u32_t ret = elapsed() + cycle_count; k_spin_unlock(&lock, key); return ret; #endif } /** * * @brief Stop announcing ticks into the kernel * * This routine disables timer interrupt generation and delivery. * Note that the timer's counting cannot be stopped by software. * * @return N/A */ void sys_clock_disable(void) { unsigned int key; /* interrupt lock level */ u32_t control; /* timer control register value */ key = irq_lock(); /* disable interrupt generation */ control = timer0_control_register_get(); timer0_control_register_set(control & ~_ARC_V2_TMR_CTRL_IE); irq_unlock(key); /* disable interrupt in the interrupt controller */ irq_disable(IRQ_TIMER0); } #ifdef CONFIG_SMP void smp_timer_init(void) { /* set the initial status of timer0 of each slave core */ timer0_control_register_set(0); timer0_count_register_set(0); timer0_limit_register_set(0); z_irq_priority_set(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, 0); irq_enable(IRQ_TIMER0); } #endif