/* * Copyright (c) 2010-2012, 2014-2015 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Architecture-independent private kernel APIs * * This file contains private kernel APIs that are not architecture-specific. */ #ifndef ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_ #define ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_ #include #include #include #ifndef _ASMLANGUAGE #ifdef __cplusplus extern "C" { #endif /* Initialize per-CPU kernel data */ void z_init_cpu(int id); /* Initialize a thread */ void z_init_thread_base(struct _thread_base *thread_base, int priority, uint32_t initial_state, unsigned int options); /* Early boot functions */ void z_early_memset(void *dst, int c, size_t n); void z_early_memcpy(void *dst, const void *src, size_t n); void z_bss_zero(void); #ifdef CONFIG_XIP void z_data_copy(void); #else static inline void z_data_copy(void) { /* Do nothing */ } #endif /* CONFIG_XIP */ #ifdef CONFIG_LINKER_USE_BOOT_SECTION void z_bss_zero_boot(void); #else static inline void z_bss_zero_boot(void) { /* Do nothing */ } #endif /* CONFIG_LINKER_USE_BOOT_SECTION */ #ifdef CONFIG_LINKER_USE_PINNED_SECTION void z_bss_zero_pinned(void); #else static inline void z_bss_zero_pinned(void) { /* Do nothing */ } #endif /* CONFIG_LINKER_USE_PINNED_SECTION */ FUNC_NORETURN void z_cstart(void); void z_device_state_init(void); extern FUNC_NORETURN void z_thread_entry(k_thread_entry_t entry, void *p1, void *p2, void *p3); extern char *z_setup_new_thread(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, const char *name); /** * @brief Allocate aligned memory from the current thread's resource pool * * Threads may be assigned a resource pool, which will be used to allocate * memory on behalf of certain kernel and driver APIs. Memory reserved * in this way should be freed with k_free(). * * If called from an ISR, the k_malloc() system heap will be used if it exists. * * @param align Required memory alignment * @param size Memory allocation size * @return A pointer to the allocated memory, or NULL if there is insufficient * RAM in the pool or there is no pool to draw memory from */ void *z_thread_aligned_alloc(size_t align, size_t size); /** * @brief Allocate some memory from the current thread's resource pool * * Threads may be assigned a resource pool, which will be used to allocate * memory on behalf of certain kernel and driver APIs. Memory reserved * in this way should be freed with k_free(). * * If called from an ISR, the k_malloc() system heap will be used if it exists. * * @param size Memory allocation size * @return A pointer to the allocated memory, or NULL if there is insufficient * RAM in the pool or there is no pool to draw memory from */ static inline void *z_thread_malloc(size_t size) { return z_thread_aligned_alloc(0, size); } #ifdef CONFIG_USE_SWITCH /* This is a arch function traditionally, but when the switch-based * z_swap() is in use it's a simple inline provided by the kernel. */ static ALWAYS_INLINE void arch_thread_return_value_set(struct k_thread *thread, unsigned int value) { thread->swap_retval = value; } #endif static ALWAYS_INLINE void z_thread_return_value_set_with_data(struct k_thread *thread, unsigned int value, void *data) { arch_thread_return_value_set(thread, value); thread->base.swap_data = data; } #ifdef CONFIG_SMP extern void z_smp_init(void); #ifdef CONFIG_SYS_CLOCK_EXISTS extern void smp_timer_init(void); #endif /* CONFIG_SYS_CLOCK_EXISTS */ #endif /* CONFIG_SMP */ extern void z_early_rand_get(uint8_t *buf, size_t length); #if CONFIG_STACK_POINTER_RANDOM extern int z_stack_adjust_initialized; #endif /* CONFIG_STACK_POINTER_RANDOM */ extern struct k_thread z_main_thread; #ifdef CONFIG_MULTITHREADING extern struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS]; #endif /* CONFIG_MULTITHREADING */ K_KERNEL_PINNED_STACK_ARRAY_DECLARE(z_interrupt_stacks, CONFIG_MP_MAX_NUM_CPUS, CONFIG_ISR_STACK_SIZE); #ifdef CONFIG_GEN_PRIV_STACKS extern uint8_t *z_priv_stack_find(k_thread_stack_t *stack); #endif /* CONFIG_GEN_PRIV_STACKS */ /* Calculate stack usage. */ int z_stack_space_get(const uint8_t *stack_start, size_t size, size_t *unused_ptr); #ifdef CONFIG_USERSPACE bool z_stack_is_user_capable(k_thread_stack_t *stack); /* Memory domain setup hook, called from z_setup_new_thread() */ void z_mem_domain_init_thread(struct k_thread *thread); /* Memory domain teardown hook, called from z_thread_abort() */ void z_mem_domain_exit_thread(struct k_thread *thread); /* This spinlock: * * - Protects the full set of active k_mem_domain objects and their contents * - Serializes calls to arch_mem_domain_* APIs * * If architecture code needs to access k_mem_domain structures or the * partitions they contain at any other point, this spinlock should be held. * Uniprocessor systems can get away with just locking interrupts but this is * not recommended. */ extern struct k_spinlock z_mem_domain_lock; #endif /* CONFIG_USERSPACE */ #ifdef CONFIG_GDBSTUB struct gdb_ctx; /* Should be called by the arch layer. This is the gdbstub main loop * and synchronously communicate with gdb on host. */ extern int z_gdb_main_loop(struct gdb_ctx *ctx); #endif /* CONFIG_GDBSTUB */ #ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING void z_thread_mark_switched_in(void); void z_thread_mark_switched_out(void); #else /** * @brief Called after a thread has been selected to run */ #define z_thread_mark_switched_in() /** * @brief Called before a thread has been selected to run */ #define z_thread_mark_switched_out() #endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */ /* Init hook for page frame management, invoked immediately upon entry of * main thread, before POST_KERNEL tasks */ void z_mem_manage_init(void); /** * @brief Finalize page frame management at the end of boot process. */ void z_mem_manage_boot_finish(void); void z_handle_obj_poll_events(sys_dlist_t *events, uint32_t state); #ifdef CONFIG_PM /* When the kernel is about to go idle, it calls this function to notify the * power management subsystem, that the kernel is ready to enter the idle state. * * At this point, the kernel has disabled interrupts and computed the maximum * time the system can remain idle. The function passes the time that the system * can remain idle. The SOC interface performs power operations that can be done * in the available time. The power management operations must halt execution of * the CPU. * * This function assumes that a wake up event has already been set up by the * application. * * This function is entered with interrupts disabled. It should re-enable * interrupts if it had entered a power state. * * @return True if the system suspended, otherwise return false */ bool pm_system_suspend(int32_t ticks); /** * Notify exit from kernel idling after PM operations * * This function would notify exit from kernel idling if a corresponding * pm_system_suspend() notification was handled and did not return * PM_STATE_ACTIVE. * * This function would be called from the ISR context of the event * that caused the exit from kernel idling. This will be called immediately * after interrupts are enabled. This is called to give a chance to do * any operations before the kernel would switch tasks or processes nested * interrupts. This is required for cpu low power states that would require * interrupts to be enabled while entering low power states. e.g. C1 in x86. In * those cases, the ISR would be invoked immediately after the event wakes up * the CPU, before code following the CPU wait, gets a chance to execute. This * can be ignored if no operation needs to be done at the wake event * notification. */ void pm_system_resume(void); #endif /* CONFIG_PM */ #ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM /** * Initialize the timing histograms for demand paging. */ void z_paging_histogram_init(void); /** * Increment the counter in the timing histogram. * * @param hist The timing histogram to be updated. * @param cycles Time spent in measured operation. */ void z_paging_histogram_inc(struct k_mem_paging_histogram_t *hist, uint32_t cycles); #endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */ #ifdef CONFIG_OBJ_CORE_STATS_THREAD int z_thread_stats_raw(struct k_obj_core *obj_core, void *stats); int z_thread_stats_query(struct k_obj_core *obj_core, void *stats); int z_thread_stats_reset(struct k_obj_core *obj_core); int z_thread_stats_disable(struct k_obj_core *obj_core); int z_thread_stats_enable(struct k_obj_core *obj_core); #endif /* CONFIG_OBJ_CORE_STATS_THREAD */ #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM int z_cpu_stats_raw(struct k_obj_core *obj_core, void *stats); int z_cpu_stats_query(struct k_obj_core *obj_core, void *stats); int z_kernel_stats_raw(struct k_obj_core *obj_core, void *stats); int z_kernel_stats_query(struct k_obj_core *obj_core, void *stats); #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ #if defined(CONFIG_THREAD_ABORT_NEED_CLEANUP) /** * Perform cleanup at the end of k_thread_abort(). * * This performs additional cleanup steps at the end of k_thread_abort() * where these steps require that the thread is no longer running. * If the target thread is not the current running thread, the cleanup * steps will be performed immediately. However, if the target thread is * the current running thread (e.g. k_thread_abort(_current)), it defers * the cleanup steps to later when the work will be finished in another * context. * * @param thread Pointer to thread to be cleaned up. */ void k_thread_abort_cleanup(struct k_thread *thread); /** * Check if thread is the same as the one waiting for cleanup. * * This is used to guard against reusing the same thread object * before the previous cleanup has finished. This will perform * the necessary cleanups before the thread object can be * reused. Should mainly be used during thread creation. * * @param thread Pointer to thread to be checked. */ void k_thread_abort_cleanup_check_reuse(struct k_thread *thread); #endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */ #ifdef __cplusplus } #endif #endif /* _ASMLANGUAGE */ #endif /* ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_ */