/* * Copyright (c) 2020 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 * * Routines for managing virtual address spaces */ #include #include #include #include #include #include #include #include LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); /* * General terminology: * - A page frame is a page-sized physical memory region in RAM. It is a * container where a data page may be placed. It is always referred to by * physical address. We have a convention of using uintptr_t for physical * addresses. We instantiate a struct z_page_frame to store metadata for * every page frame. * * - A data page is a page-sized region of data. It may exist in a page frame, * or be paged out to some backing store. Its location can always be looked * up in the CPU's page tables (or equivalent) by virtual address. * The data type will always be void * or in some cases uint8_t * when we * want to do pointer arithmetic. */ /* Spinlock to protect any globals in this file and serialize page table * updates in arch code */ struct k_spinlock z_mm_lock; /* * General page frame management */ /* Database of all RAM page frames */ struct z_page_frame z_page_frames[Z_NUM_PAGE_FRAMES]; #if __ASSERT_ON /* Indicator that z_page_frames has been initialized, many of these APIs do * not work before POST_KERNEL */ static bool page_frames_initialized; #endif /* Add colors to page table dumps to indicate mapping type */ #define COLOR_PAGE_FRAMES 1 #if COLOR_PAGE_FRAMES #define ANSI_DEFAULT "\x1B[0m" #define ANSI_RED "\x1B[1;31m" #define ANSI_GREEN "\x1B[1;32m" #define ANSI_YELLOW "\x1B[1;33m" #define ANSI_BLUE "\x1B[1;34m" #define ANSI_MAGENTA "\x1B[1;35m" #define ANSI_CYAN "\x1B[1;36m" #define ANSI_GREY "\x1B[1;90m" #define COLOR(x) printk(_CONCAT(ANSI_, x)) #else #define COLOR(x) do { } while (0) #endif static void page_frame_dump(struct z_page_frame *pf) { if (z_page_frame_is_reserved(pf)) { COLOR(CYAN); printk("R"); } else if (z_page_frame_is_busy(pf)) { COLOR(MAGENTA); printk("B"); } else if (z_page_frame_is_pinned(pf)) { COLOR(YELLOW); printk("P"); } else if (z_page_frame_is_available(pf)) { COLOR(GREY); printk("."); } else if (z_page_frame_is_mapped(pf)) { COLOR(DEFAULT); printk("M"); } else { COLOR(RED); printk("?"); } } void z_page_frames_dump(void) { int column = 0; __ASSERT(page_frames_initialized, "%s called too early", __func__); printk("Physical memory from 0x%lx to 0x%lx\n", Z_PHYS_RAM_START, Z_PHYS_RAM_END); for (int i = 0; i < Z_NUM_PAGE_FRAMES; i++) { struct z_page_frame *pf = &z_page_frames[i]; page_frame_dump(pf); column++; if (column == 64) { column = 0; printk("\n"); } } COLOR(DEFAULT); if (column != 0) { printk("\n"); } } #define VIRT_FOREACH(_base, _size, _pos) \ for (_pos = _base; \ _pos < ((uint8_t *)_base + _size); _pos += CONFIG_MMU_PAGE_SIZE) #define PHYS_FOREACH(_base, _size, _pos) \ for (_pos = _base; \ _pos < ((uintptr_t)_base + _size); _pos += CONFIG_MMU_PAGE_SIZE) /* * Virtual address space management * * Call all of these functions with z_mm_lock held. * * Overall virtual memory map: When the kernel starts, it resides in * virtual memory in the region Z_BOOT_KERNEL_VIRT_START to * Z_BOOT_KERNEL_VIRT_END. Unused virtual memory past this, up to the limit * noted by CONFIG_KERNEL_VM_SIZE may be used for runtime memory mappings. * * +--------------+ <- Z_VIRT_ADDR_START * | Undefined VM | <- May contain ancillary regions like x86_64's locore * +--------------+ <- Z_BOOT_KERNEL_VIRT_START (often == Z_VIRT_ADDR_START) * | Mapping for | * | main kernel | * | image | * | | * | | * +--------------+ <- Z_BOOT_KERNEL_VIRT_END * | | * | Unused, | * | Available VM | * | | * |..............| <- mapping_pos (grows downward as more mappings are made) * | Mapping | * +--------------+ * | Mapping | * +--------------+ * | ... | * +--------------+ * | Mapping | * +--------------+ <- mappings start here * | Reserved | <- special purpose virtual page(s) of size Z_VM_RESERVED * +--------------+ <- Z_VIRT_RAM_END * * At the moment we just have one downward-growing area for mappings. * There is currently no support for un-mapping memory, see #28900. */ static uint8_t *mapping_pos = Z_VIRT_RAM_END - Z_VM_RESERVED; /* Get a chunk of virtual memory and mark it as being in-use. * * This may be called from arch early boot code before z_cstart() is invoked. * Data will be copied and BSS zeroed, but this must not rely on any * initialization functions being called prior to work correctly. */ static void *virt_region_get(size_t size) { uint8_t *dest_addr; if ((mapping_pos - size) < Z_KERNEL_VIRT_END) { LOG_ERR("insufficient virtual address space (requested %zu)", size); return NULL; } mapping_pos -= size; dest_addr = mapping_pos; return dest_addr; } /* * Free page frames management * * Call all of these functions with z_mm_lock held. */ /* Linked list of unused and available page frames. * * TODO: This is very simple and treats all free page frames as being equal. * However, there are use-cases to consolidate free pages such that entire * SRAM banks can be switched off to save power, and so obtaining free pages * may require a more complex ontology which prefers page frames in RAM banks * which are still active. * * This implies in the future there may be multiple slists managing physical * pages. Each page frame will still just have one snode link. */ static sys_slist_t free_page_frame_list; /* Number of unused and available free page frames */ size_t z_free_page_count; #define PF_ASSERT(pf, expr, fmt, ...) \ __ASSERT(expr, "page frame 0x%lx: " fmt, z_page_frame_to_phys(pf), \ ##__VA_ARGS__) /* Get an unused page frame. don't care which one, or NULL if there are none */ static struct z_page_frame *free_page_frame_list_get(void) { sys_snode_t *node; struct z_page_frame *pf = NULL; node = sys_slist_get(&free_page_frame_list); if (node != NULL) { z_free_page_count--; pf = CONTAINER_OF(node, struct z_page_frame, node); PF_ASSERT(pf, z_page_frame_is_available(pf), "unavailable but somehow on free list"); } return pf; } /* Release a page frame back into the list of free pages */ static void free_page_frame_list_put(struct z_page_frame *pf) { PF_ASSERT(pf, z_page_frame_is_available(pf), "unavailable page put on free list"); sys_slist_append(&free_page_frame_list, &pf->node); z_free_page_count++; } static void free_page_frame_list_init(void) { sys_slist_init(&free_page_frame_list); } /* * Memory Mapping */ /* Called after the frame is mapped in the arch layer, to update our * local ontology (and do some assertions while we're at it) */ static void frame_mapped_set(struct z_page_frame *pf, void *addr) { PF_ASSERT(pf, !z_page_frame_is_reserved(pf), "attempted to map a reserved page frame"); /* We do allow multiple mappings for pinned page frames * since we will never need to reverse map them. * This is uncommon, use-cases are for things like the * Zephyr equivalent of VSDOs */ PF_ASSERT(pf, !z_page_frame_is_mapped(pf) || z_page_frame_is_pinned(pf), "non-pinned and already mapped to %p", pf->addr); pf->flags |= Z_PAGE_FRAME_MAPPED; pf->addr = addr; } /* Allocate a free page frame, and map it to a specified virtual address * * TODO: Add optional support for copy-on-write mappings to a zero page instead * of allocating, in which case page frames will be allocated lazily as * the mappings to the zero page get touched. */ static int map_anon_page(void *addr, uint32_t flags) { int ret; struct z_page_frame *pf; uintptr_t phys; bool lock = (flags & K_MEM_MAP_LOCK) != 0; pf = free_page_frame_list_get(); if (pf == NULL) { return -ENOMEM; } phys = z_page_frame_to_phys(pf); ret = arch_mem_map(addr, phys, CONFIG_MMU_PAGE_SIZE, flags | K_MEM_CACHE_WB); if (ret != 0) { free_page_frame_list_put(pf); return -ENOMEM; } if (lock) { pf->flags |= Z_PAGE_FRAME_PINNED; } frame_mapped_set(pf, addr); return 0; } void *k_mem_map(size_t size, uint32_t flags) {; uint8_t *dst; size_t total_size = size; int ret; k_spinlock_key_t key; bool uninit = (flags & K_MEM_MAP_UNINIT) != 0; bool guard = (flags & K_MEM_MAP_GUARD) != 0; uint8_t *pos; __ASSERT(!(((flags & K_MEM_PERM_USER) != 0) && uninit), "user access to anonymous uninitialized pages is forbidden"); __ASSERT(size % CONFIG_MMU_PAGE_SIZE == 0, "unaligned size %zu passed to %s", size, __func__); __ASSERT(size != 0, "zero sized memory mapping"); __ASSERT(page_frames_initialized, "%s called too early", __func__); __ASSERT((flags & K_MEM_CACHE_MASK) == 0, "%s does not support explicit cache settings", __func__); key = k_spin_lock(&z_mm_lock); if (guard) { /* Need extra virtual page for the guard which we * won't map */ total_size += CONFIG_MMU_PAGE_SIZE; } dst = virt_region_get(total_size); if (dst == NULL) { /* Address space has no free region */ goto out; } if (guard) { /* Skip over the guard page in returned address. */ dst += CONFIG_MMU_PAGE_SIZE; } VIRT_FOREACH(dst, size, pos) { ret = map_anon_page(pos, flags); if (ret != 0) { /* TODO: call k_mem_unmap(dst, pos - dst) when * implmented in #28990 and release any guard virtual * page as well. */ dst = NULL; goto out; } } if (!uninit) { /* If we later implement mappings to a copy-on-write zero * page, won't need this step */ memset(dst, 0, size); } out: k_spin_unlock(&z_mm_lock, key); return dst; } size_t k_mem_free_get(void) { size_t ret; k_spinlock_key_t key; __ASSERT(page_frames_initialized, "%s called too early", __func__); key = k_spin_lock(&z_mm_lock); ret = z_free_page_count; k_spin_unlock(&z_mm_lock, key); return ret * CONFIG_MMU_PAGE_SIZE; } /* This may be called from arch early boot code before z_cstart() is invoked. * Data will be copied and BSS zeroed, but this must not rely on any * initialization functions being called prior to work correctly. */ void z_phys_map(uint8_t **virt_ptr, uintptr_t phys, size_t size, uint32_t flags) { uintptr_t aligned_phys, addr_offset; size_t aligned_size; int ret; k_spinlock_key_t key; uint8_t *dest_addr; addr_offset = k_mem_region_align(&aligned_phys, &aligned_size, phys, size, CONFIG_MMU_PAGE_SIZE); __ASSERT(aligned_size != 0, "0-length mapping at 0x%lx", aligned_phys); __ASSERT(aligned_phys < (aligned_phys + (aligned_size - 1)), "wraparound for physical address 0x%lx (size %zu)", aligned_phys, aligned_size); key = k_spin_lock(&z_mm_lock); /* Obtain an appropriately sized chunk of virtual memory */ dest_addr = virt_region_get(aligned_size); if (!dest_addr) { goto fail; } /* If this fails there's something amiss with virt_region_get */ __ASSERT((uintptr_t)dest_addr < ((uintptr_t)dest_addr + (size - 1)), "wraparound for virtual address %p (size %zu)", dest_addr, size); LOG_DBG("arch_mem_map(%p, 0x%lx, %zu, %x) offset %lu", dest_addr, aligned_phys, aligned_size, flags, addr_offset); ret = arch_mem_map(dest_addr, aligned_phys, aligned_size, flags); if (ret != 0) { LOG_ERR("arch_mem_map() failed with %d", ret); goto fail; } k_spin_unlock(&z_mm_lock, key); *virt_ptr = dest_addr + addr_offset; return; fail: /* May re-visit this in the future, but for now running out of * virtual address space or failing the arch_mem_map() call is * an unrecoverable situation. * * Other problems not related to resource exhaustion we leave as * assertions since they are clearly programming mistakes. */ LOG_ERR("memory mapping 0x%lx (size %zu, flags 0x%x) failed", phys, size, flags); k_panic(); } /* * Miscellaneous */ size_t k_mem_region_align(uintptr_t *aligned_phys, size_t *aligned_size, uintptr_t phys_addr, size_t size, size_t align) { size_t addr_offset; /* The actual mapped region must be page-aligned. Round down the * physical address and pad the region size appropriately */ *aligned_phys = ROUND_DOWN(phys_addr, align); addr_offset = phys_addr - *aligned_phys; *aligned_size = ROUND_UP(size + addr_offset, align); return addr_offset; } #define VM_OFFSET ((CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_OFFSET) - \ CONFIG_SRAM_BASE_ADDRESS) /* Only applies to boot RAM mappings within the Zephyr image that have never * been remapped or paged out. Never use this unless you know exactly what you * are doing. */ #define BOOT_VIRT_TO_PHYS(virt) ((uintptr_t)(((uint8_t *)virt) + VM_OFFSET)) void z_mem_manage_init(void) { uintptr_t phys; uint8_t *addr; struct z_page_frame *pf; k_spinlock_key_t key = k_spin_lock(&z_mm_lock); free_page_frame_list_init(); #ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES /* If some page frames are unavailable for use as memory, arch * code will mark Z_PAGE_FRAME_RESERVED in their flags */ arch_reserved_pages_update(); #endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */ /* All pages composing the Zephyr image are mapped at boot in a * predictable way. This can change at runtime. */ VIRT_FOREACH(Z_KERNEL_VIRT_START, Z_KERNEL_VIRT_SIZE, addr) { frame_mapped_set(z_phys_to_page_frame(BOOT_VIRT_TO_PHYS(addr)), addr); } /* Any remaining pages that aren't mapped, reserved, or pinned get * added to the free pages list */ Z_PAGE_FRAME_FOREACH(phys, pf) { if (z_page_frame_is_available(pf)) { free_page_frame_list_put(pf); } } LOG_DBG("free page frames: %zu", z_free_page_count); #if __ASSERT_ON page_frames_initialized = true; #endif k_spin_unlock(&z_mm_lock, key); }