/* ieee802154_nrf5.c - nRF5 802.15.4 driver */ /* * Copyright (c) 2017-2023 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT nordic_nrf_ieee802154 #define LOG_MODULE_NAME ieee802154_nrf5 #if defined(CONFIG_IEEE802154_DRIVER_LOG_LEVEL) #define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL #else #define LOG_LEVEL LOG_LEVEL_NONE #endif #include LOG_MODULE_REGISTER(LOG_MODULE_NAME); #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_NET_L2_OPENTHREAD) #include #include #endif #include #include #include #include #include #include "ieee802154_nrf5.h" #include "nrf_802154.h" #include "nrf_802154_const.h" #if defined(CONFIG_NRF_802154_SER_HOST) #include "nrf_802154_serialization_error.h" #endif struct nrf5_802154_config { void (*irq_config_func)(const struct device *dev); }; static struct nrf5_802154_data nrf5_data; #define ACK_REQUEST_BYTE 1 #define ACK_REQUEST_BIT (1 << 5) #define FRAME_PENDING_BYTE 1 #define FRAME_PENDING_BIT (1 << 4) #define DRX_SLOT_RX 0 /* Delayed reception window ID */ #if defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE) #if defined(CONFIG_SOC_NRF5340_CPUAPP) #if defined(CONFIG_TRUSTED_EXECUTION_NONSECURE) #error "NRF_UICR->OTP is not supported to read from non-secure" #else #define EUI64_ADDR (NRF_UICR->OTP) #endif /* CONFIG_TRUSTED_EXECUTION_NONSECURE */ #else #define EUI64_ADDR (NRF_UICR->CUSTOMER) #endif /* CONFIG_SOC_NRF5340_CPUAPP */ #endif /* CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE */ #if defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE) #define EUI64_ADDR_HIGH CONFIG_IEEE802154_NRF5_UICR_EUI64_REG #define EUI64_ADDR_LOW (CONFIG_IEEE802154_NRF5_UICR_EUI64_REG + 1) #else #define EUI64_ADDR_HIGH 0 #define EUI64_ADDR_LOW 1 #endif /* CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE */ /* Convenience defines for RADIO */ #define NRF5_802154_DATA(dev) \ ((struct nrf5_802154_data * const)(dev)->data) #define NRF5_802154_CFG(dev) \ ((const struct nrf5_802154_config * const)(dev)->config) #if CONFIG_IEEE802154_VENDOR_OUI_ENABLE #define IEEE802154_NRF5_VENDOR_OUI CONFIG_IEEE802154_VENDOR_OUI #else #define IEEE802154_NRF5_VENDOR_OUI (uint32_t)0xF4CE36 #endif static void nrf5_get_eui64(uint8_t *mac) { uint64_t factoryAddress; uint32_t index = 0; #if !defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE) uint32_t deviceid[2]; /* Set the MAC Address Block Larger (MA-L) formerly called OUI. */ mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 16) & 0xff; mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 8) & 0xff; mac[index++] = IEEE802154_NRF5_VENDOR_OUI & 0xff; soc_secure_read_deviceid(deviceid); factoryAddress = (uint64_t)deviceid[EUI64_ADDR_HIGH] << 32; factoryAddress |= deviceid[EUI64_ADDR_LOW]; #else /* Use device identifier assigned during the production. */ factoryAddress = (uint64_t)EUI64_ADDR[EUI64_ADDR_HIGH] << 32; factoryAddress |= EUI64_ADDR[EUI64_ADDR_LOW]; #endif memcpy(mac + index, &factoryAddress, sizeof(factoryAddress) - index); } static void nrf5_rx_thread(void *arg1, void *arg2, void *arg3) { struct nrf5_802154_data *nrf5_radio = (struct nrf5_802154_data *)arg1; struct net_pkt *pkt; struct nrf5_802154_rx_frame *rx_frame; uint8_t pkt_len; uint8_t *psdu; ARG_UNUSED(arg2); ARG_UNUSED(arg3); while (1) { pkt = NULL; rx_frame = NULL; LOG_DBG("Waiting for frame"); rx_frame = k_fifo_get(&nrf5_radio->rx_fifo, K_FOREVER); __ASSERT_NO_MSG(rx_frame->psdu); /* rx_mpdu contains length, psdu, fcs|lqi * The last 2 bytes contain LQI or FCS, depending if * automatic CRC handling is enabled or not, respectively. */ if (IS_ENABLED(CONFIG_IEEE802154_NRF5_FCS_IN_LENGTH)) { pkt_len = rx_frame->psdu[0]; } else { pkt_len = rx_frame->psdu[0] - IEEE802154_FCS_LENGTH; } #if defined(CONFIG_NET_BUF_DATA_SIZE) __ASSERT_NO_MSG(pkt_len <= CONFIG_NET_BUF_DATA_SIZE); #endif LOG_DBG("Frame received"); /* Block the RX thread until net_pkt is available, so that we * don't drop already ACKed frame in case of temporary net_pkt * scarcity. The nRF 802154 radio driver will accumulate any * incoming frames until it runs out of internal buffers (and * thus stops acknowledging consecutive frames). */ pkt = net_pkt_rx_alloc_with_buffer(nrf5_radio->iface, pkt_len, AF_UNSPEC, 0, K_FOREVER); if (net_pkt_write(pkt, rx_frame->psdu + 1, pkt_len)) { goto drop; } net_pkt_set_ieee802154_lqi(pkt, rx_frame->lqi); net_pkt_set_ieee802154_rssi_dbm(pkt, rx_frame->rssi); net_pkt_set_ieee802154_ack_fpb(pkt, rx_frame->ack_fpb); #if defined(CONFIG_NET_PKT_TIMESTAMP) net_pkt_set_timestamp_ns(pkt, rx_frame->time * NSEC_PER_USEC); #endif LOG_DBG("Caught a packet (%u) (LQI: %u)", pkt_len, rx_frame->lqi); if (net_recv_data(nrf5_radio->iface, pkt) < 0) { LOG_ERR("Packet dropped by NET stack"); goto drop; } psdu = rx_frame->psdu; rx_frame->psdu = NULL; nrf_802154_buffer_free_raw(psdu); if (LOG_LEVEL >= LOG_LEVEL_DBG) { log_stack_usage(&nrf5_radio->rx_thread); } continue; drop: psdu = rx_frame->psdu; rx_frame->psdu = NULL; nrf_802154_buffer_free_raw(psdu); net_pkt_unref(pkt); } } static void nrf5_get_capabilities_at_boot(void) { nrf_802154_capabilities_t caps = nrf_802154_capabilities_get(); nrf5_data.capabilities = IEEE802154_HW_FCS | IEEE802154_HW_PROMISC | IEEE802154_HW_FILTER | ((caps & NRF_802154_CAPABILITY_CSMA) ? IEEE802154_HW_CSMA : 0UL) | IEEE802154_HW_TX_RX_ACK | IEEE802154_HW_RX_TX_ACK | IEEE802154_HW_ENERGY_SCAN | ((caps & NRF_802154_CAPABILITY_DELAYED_TX) ? IEEE802154_HW_TXTIME : 0UL) | ((caps & NRF_802154_CAPABILITY_DELAYED_RX) ? IEEE802154_HW_RXTIME : 0UL) | IEEE802154_HW_SLEEP_TO_TX | ((caps & NRF_802154_CAPABILITY_SECURITY) ? IEEE802154_HW_TX_SEC : 0UL) #if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA) | IEEE802154_OPENTHREAD_HW_MULTIPLE_CCA #endif ; } /* Radio device API */ static enum ieee802154_hw_caps nrf5_get_capabilities(const struct device *dev) { return nrf5_data.capabilities; } static int nrf5_cca(const struct device *dev) { struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev); if (!nrf_802154_cca()) { LOG_DBG("CCA failed"); return -EBUSY; } /* The nRF driver guarantees that a callback will be called once * the CCA function is done, thus unlocking the semaphore. */ k_sem_take(&nrf5_radio->cca_wait, K_FOREVER); LOG_DBG("Channel free? %d", nrf5_radio->channel_free); return nrf5_radio->channel_free ? 0 : -EBUSY; } static int nrf5_set_channel(const struct device *dev, uint16_t channel) { ARG_UNUSED(dev); LOG_DBG("%u", channel); if (channel < 11 || channel > 26) { return channel < 11 ? -ENOTSUP : -EINVAL; } nrf_802154_channel_set(channel); return 0; } static int nrf5_energy_scan_start(const struct device *dev, uint16_t duration, energy_scan_done_cb_t done_cb) { int err = 0; ARG_UNUSED(dev); if (nrf5_data.energy_scan_done == NULL) { nrf5_data.energy_scan_done = done_cb; if (nrf_802154_energy_detection(duration * 1000) == false) { nrf5_data.energy_scan_done = NULL; err = -EBUSY; } } else { err = -EALREADY; } return err; } static int nrf5_set_pan_id(const struct device *dev, uint16_t pan_id) { uint8_t pan_id_le[2]; ARG_UNUSED(dev); sys_put_le16(pan_id, pan_id_le); nrf_802154_pan_id_set(pan_id_le); LOG_DBG("0x%x", pan_id); return 0; } static int nrf5_set_short_addr(const struct device *dev, uint16_t short_addr) { uint8_t short_addr_le[2]; ARG_UNUSED(dev); sys_put_le16(short_addr, short_addr_le); nrf_802154_short_address_set(short_addr_le); LOG_DBG("0x%x", short_addr); return 0; } static int nrf5_set_ieee_addr(const struct device *dev, const uint8_t *ieee_addr) { ARG_UNUSED(dev); LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x", ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4], ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]); nrf_802154_extended_address_set(ieee_addr); return 0; } static int nrf5_filter(const struct device *dev, bool set, enum ieee802154_filter_type type, const struct ieee802154_filter *filter) { LOG_DBG("Applying filter %u", type); if (!set) { return -ENOTSUP; } if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) { return nrf5_set_ieee_addr(dev, filter->ieee_addr); } else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) { return nrf5_set_short_addr(dev, filter->short_addr); } else if (type == IEEE802154_FILTER_TYPE_PAN_ID) { return nrf5_set_pan_id(dev, filter->pan_id); } return -ENOTSUP; } static int nrf5_set_txpower(const struct device *dev, int16_t dbm) { ARG_UNUSED(dev); LOG_DBG("%d", dbm); nrf_802154_tx_power_set(dbm); return 0; } static int handle_ack(struct nrf5_802154_data *nrf5_radio) { uint8_t ack_len; struct net_pkt *ack_pkt; int err = 0; if (IS_ENABLED(CONFIG_IEEE802154_NRF5_FCS_IN_LENGTH)) { ack_len = nrf5_radio->ack_frame.psdu[0]; } else { ack_len = nrf5_radio->ack_frame.psdu[0] - IEEE802154_FCS_LENGTH; } ack_pkt = net_pkt_rx_alloc_with_buffer(nrf5_radio->iface, ack_len, AF_UNSPEC, 0, K_NO_WAIT); if (!ack_pkt) { LOG_ERR("No free packet available."); err = -ENOMEM; goto free_nrf_ack; } /* Upper layers expect the frame to start at the MAC header, skip the * PHY header (1 byte). */ if (net_pkt_write(ack_pkt, nrf5_radio->ack_frame.psdu + 1, ack_len) < 0) { LOG_ERR("Failed to write to a packet."); err = -ENOMEM; goto free_net_ack; } net_pkt_set_ieee802154_lqi(ack_pkt, nrf5_radio->ack_frame.lqi); net_pkt_set_ieee802154_rssi_dbm(ack_pkt, nrf5_radio->ack_frame.rssi); #if defined(CONFIG_NET_PKT_TIMESTAMP) net_pkt_set_timestamp_ns(ack_pkt, nrf5_radio->ack_frame.time * NSEC_PER_USEC); #endif net_pkt_cursor_init(ack_pkt); if (ieee802154_handle_ack(nrf5_radio->iface, ack_pkt) != NET_OK) { LOG_INF("ACK packet not handled - releasing."); } free_net_ack: net_pkt_unref(ack_pkt); free_nrf_ack: nrf_802154_buffer_free_raw(nrf5_radio->ack_frame.psdu); nrf5_radio->ack_frame.psdu = NULL; return err; } static void nrf5_tx_started(const struct device *dev, struct net_pkt *pkt, struct net_buf *frag) { ARG_UNUSED(pkt); if (nrf5_data.event_handler) { nrf5_data.event_handler(dev, IEEE802154_EVENT_TX_STARTED, (void *)frag); } } static bool nrf5_tx_immediate(struct net_pkt *pkt, uint8_t *payload, bool cca) { nrf_802154_transmit_metadata_t metadata = { .frame_props = { .is_secured = net_pkt_ieee802154_frame_secured(pkt), .dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt), }, .cca = cca, .tx_power = { .use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER), #if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER) .power = net_pkt_ieee802154_txpwr(pkt), #endif }, }; return nrf_802154_transmit_raw(payload, &metadata); } #if NRF_802154_CSMA_CA_ENABLED static bool nrf5_tx_csma_ca(struct net_pkt *pkt, uint8_t *payload) { nrf_802154_transmit_csma_ca_metadata_t metadata = { .frame_props = { .is_secured = net_pkt_ieee802154_frame_secured(pkt), .dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt), }, .tx_power = { .use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER), #if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER) .power = net_pkt_ieee802154_txpwr(pkt), #endif }, }; return nrf_802154_transmit_csma_ca_raw(payload, &metadata); } #endif #if defined(CONFIG_NET_PKT_TXTIME) static bool nrf5_tx_at(struct nrf5_802154_data *nrf5_radio, struct net_pkt *pkt, uint8_t *payload, enum ieee802154_tx_mode mode) { bool cca = false; #if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA) uint8_t max_extra_cca_attempts = 0; #endif switch (mode) { case IEEE802154_TX_MODE_TXTIME: break; case IEEE802154_TX_MODE_TXTIME_CCA: cca = true; break; #if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA) case IEEE802154_OPENTHREAD_TX_MODE_TXTIME_MULTIPLE_CCA: cca = true; max_extra_cca_attempts = nrf5_data.max_extra_cca_attempts; break; #endif break; default: __ASSERT_NO_MSG(false); return false; } nrf_802154_transmit_at_metadata_t metadata = { .frame_props = { .is_secured = net_pkt_ieee802154_frame_secured(pkt), .dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt), }, .cca = cca, .channel = nrf_802154_channel_get(), .tx_power = { .use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER), #if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER) .power = net_pkt_ieee802154_txpwr(pkt), #endif }, #if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA) .extra_cca_attempts = max_extra_cca_attempts, #endif }; /* The timestamp points to the start of PHR but `nrf_802154_transmit_raw_at` * expects a timestamp pointing to start of SHR. */ uint64_t tx_at = nrf_802154_timestamp_phr_to_shr_convert( net_pkt_timestamp_ns(pkt) / NSEC_PER_USEC); return nrf_802154_transmit_raw_at(payload, tx_at, &metadata); } #endif /* CONFIG_NET_PKT_TXTIME */ static int nrf5_tx(const struct device *dev, enum ieee802154_tx_mode mode, struct net_pkt *pkt, struct net_buf *frag) { struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev); uint8_t payload_len = frag->len; uint8_t *payload = frag->data; bool ret = true; if (payload_len > IEEE802154_MTU) { LOG_ERR("Payload too large: %d", payload_len); return -EMSGSIZE; } LOG_DBG("%p (%u)", payload, payload_len); nrf5_radio->tx_psdu[0] = payload_len + IEEE802154_FCS_LENGTH; memcpy(nrf5_radio->tx_psdu + 1, payload, payload_len); /* Reset semaphore in case ACK was received after timeout */ k_sem_reset(&nrf5_radio->tx_wait); switch (mode) { case IEEE802154_TX_MODE_DIRECT: case IEEE802154_TX_MODE_CCA: ret = nrf5_tx_immediate(pkt, nrf5_radio->tx_psdu, mode == IEEE802154_TX_MODE_CCA); break; #if NRF_802154_CSMA_CA_ENABLED case IEEE802154_TX_MODE_CSMA_CA: ret = nrf5_tx_csma_ca(pkt, nrf5_radio->tx_psdu); break; #endif #if defined(CONFIG_NET_PKT_TXTIME) case IEEE802154_TX_MODE_TXTIME: case IEEE802154_TX_MODE_TXTIME_CCA: #if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA) case IEEE802154_OPENTHREAD_TX_MODE_TXTIME_MULTIPLE_CCA: #endif __ASSERT_NO_MSG(pkt); ret = nrf5_tx_at(nrf5_radio, pkt, nrf5_radio->tx_psdu, mode); break; #endif /* CONFIG_NET_PKT_TXTIME */ default: NET_ERR("TX mode %d not supported", mode); return -ENOTSUP; } if (!ret) { LOG_ERR("Cannot send frame"); return -EIO; } nrf5_tx_started(dev, pkt, frag); LOG_DBG("Sending frame (ch:%d, txpower:%d)", nrf_802154_channel_get(), nrf_802154_tx_power_get()); /* Wait for the callback from the radio driver. */ k_sem_take(&nrf5_radio->tx_wait, K_FOREVER); LOG_DBG("Result: %d", nrf5_data.tx_result); #if defined(CONFIG_NRF_802154_ENCRYPTION) /* * When frame encryption by the radio driver is enabled, the frame stored in * the tx_psdu buffer is: * 1) authenticated and encrypted in place which causes that after an unsuccessful * TX attempt, this frame must be propagated back to the upper layer for retransmission. * The upper layer must ensure that the exact same secured frame is used for * retransmission * 2) frame counters are updated in place and for keeping the link frame counter up to date, * this information must be propagated back to the upper layer */ memcpy(payload, nrf5_radio->tx_psdu + 1, payload_len); #endif net_pkt_set_ieee802154_frame_secured(pkt, nrf5_radio->tx_frame_is_secured); net_pkt_set_ieee802154_mac_hdr_rdy(pkt, nrf5_radio->tx_frame_mac_hdr_rdy); switch (nrf5_radio->tx_result) { case NRF_802154_TX_ERROR_NONE: if (nrf5_radio->ack_frame.psdu == NULL) { /* No ACK was requested. */ return 0; } /* Handle ACK packet. */ return handle_ack(nrf5_radio); case NRF_802154_TX_ERROR_NO_MEM: return -ENOBUFS; case NRF_802154_TX_ERROR_BUSY_CHANNEL: return -EBUSY; case NRF_802154_TX_ERROR_INVALID_ACK: case NRF_802154_TX_ERROR_NO_ACK: return -ENOMSG; case NRF_802154_TX_ERROR_ABORTED: case NRF_802154_TX_ERROR_TIMESLOT_DENIED: case NRF_802154_TX_ERROR_TIMESLOT_ENDED: default: return -EIO; } } static net_time_t nrf5_get_time(const struct device *dev) { ARG_UNUSED(dev); return (net_time_t)nrf_802154_time_get() * NSEC_PER_USEC; } static uint8_t nrf5_get_acc(const struct device *dev) { ARG_UNUSED(dev); return CONFIG_IEEE802154_NRF5_DELAY_TRX_ACC; } static int nrf5_start(const struct device *dev) { ARG_UNUSED(dev); if (!nrf_802154_receive()) { LOG_ERR("Failed to enter receive state"); return -EIO; } LOG_DBG("nRF5 802154 radio started (channel: %d)", nrf_802154_channel_get()); return 0; } static int nrf5_stop(const struct device *dev) { #if defined(CONFIG_IEEE802154_CSL_ENDPOINT) if (nrf_802154_sleep_if_idle() != NRF_802154_SLEEP_ERROR_NONE) { if (nrf5_data.event_handler) { nrf5_data.event_handler(dev, IEEE802154_EVENT_RX_OFF, NULL); } else { LOG_WRN("Transition to radio sleep cannot be handled."); } return 0; } #else ARG_UNUSED(dev); if (!nrf_802154_sleep()) { LOG_ERR("Error while stopping radio"); return -EIO; } #endif LOG_DBG("nRF5 802154 radio stopped"); return 0; } #if defined(CONFIG_NRF_802154_CARRIER_FUNCTIONS) static int nrf5_continuous_carrier(const struct device *dev) { ARG_UNUSED(dev); if (!nrf_802154_continuous_carrier()) { LOG_ERR("Failed to enter continuous carrier state"); return -EIO; } LOG_DBG("Continuous carrier wave transmission started (channel: %d)", nrf_802154_channel_get()); return 0; } #endif #if !IS_ENABLED(CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT) static void nrf5_radio_irq(const void *arg) { ARG_UNUSED(arg); nrf_802154_radio_irq_handler(); } #endif static void nrf5_irq_config(const struct device *dev) { ARG_UNUSED(dev); #if !IS_ENABLED(CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT) IRQ_CONNECT(RADIO_IRQn, NRF_802154_IRQ_PRIORITY, nrf5_radio_irq, NULL, 0); irq_enable(RADIO_IRQn); #endif } static int nrf5_init(const struct device *dev) { const struct nrf5_802154_config *nrf5_radio_cfg = NRF5_802154_CFG(dev); struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev); k_fifo_init(&nrf5_radio->rx_fifo); k_sem_init(&nrf5_radio->tx_wait, 0, 1); k_sem_init(&nrf5_radio->cca_wait, 0, 1); nrf_802154_init(); nrf5_get_capabilities_at_boot(); nrf5_radio_cfg->irq_config_func(dev); k_thread_create(&nrf5_radio->rx_thread, nrf5_radio->rx_stack, CONFIG_IEEE802154_NRF5_RX_STACK_SIZE, nrf5_rx_thread, nrf5_radio, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT); k_thread_name_set(&nrf5_radio->rx_thread, "nrf5_rx"); LOG_INF("nRF5 802154 radio initialized"); return 0; } static void nrf5_iface_init(struct net_if *iface) { const struct device *dev = net_if_get_device(iface); struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev); nrf5_get_eui64(nrf5_radio->mac); net_if_set_link_addr(iface, nrf5_radio->mac, sizeof(nrf5_radio->mac), NET_LINK_IEEE802154); nrf5_radio->iface = iface; ieee802154_init(iface); } #if defined(CONFIG_NRF_802154_ENCRYPTION) static void nrf5_config_mac_keys(struct ieee802154_key *mac_keys) { static nrf_802154_key_id_t stored_key_ids[NRF_802154_SECURITY_KEY_STORAGE_SIZE]; static uint8_t stored_ids[NRF_802154_SECURITY_KEY_STORAGE_SIZE]; uint8_t i; for (i = 0; i < NRF_802154_SECURITY_KEY_STORAGE_SIZE && stored_key_ids[i].p_key_id; i++) { nrf_802154_security_key_remove(&stored_key_ids[i]); stored_key_ids[i].p_key_id = NULL; } i = 0; for (struct ieee802154_key *keys = mac_keys; keys->key_value && i < NRF_802154_SECURITY_KEY_STORAGE_SIZE; keys++, i++) { nrf_802154_key_t key = { .value.p_cleartext_key = keys->key_value, .id.mode = keys->key_id_mode, .id.p_key_id = &(keys->key_index), .type = NRF_802154_KEY_CLEARTEXT, .frame_counter = 0, .use_global_frame_counter = !(keys->frame_counter_per_key), }; __ASSERT_EVAL((void)nrf_802154_security_key_store(&key), nrf_802154_security_error_t err = nrf_802154_security_key_store(&key), err == NRF_802154_SECURITY_ERROR_NONE || err == NRF_802154_SECURITY_ERROR_ALREADY_PRESENT, "Storing key failed, err: %d", err); stored_ids[i] = *key.id.p_key_id; stored_key_ids[i].mode = key.id.mode; stored_key_ids[i].p_key_id = &stored_ids[i]; }; } #endif /* CONFIG_NRF_802154_ENCRYPTION */ static int nrf5_configure(const struct device *dev, enum ieee802154_config_type type, const struct ieee802154_config *config) { ARG_UNUSED(dev); switch (type) { case IEEE802154_CONFIG_AUTO_ACK_FPB: if (config->auto_ack_fpb.enabled) { switch (config->auto_ack_fpb.mode) { case IEEE802154_FPB_ADDR_MATCH_THREAD: nrf_802154_src_addr_matching_method_set( NRF_802154_SRC_ADDR_MATCH_THREAD); break; case IEEE802154_FPB_ADDR_MATCH_ZIGBEE: nrf_802154_src_addr_matching_method_set( NRF_802154_SRC_ADDR_MATCH_ZIGBEE); break; default: return -EINVAL; } } nrf_802154_auto_pending_bit_set(config->auto_ack_fpb.enabled); break; case IEEE802154_CONFIG_ACK_FPB: if (config->ack_fpb.enabled) { if (!nrf_802154_pending_bit_for_addr_set( config->ack_fpb.addr, config->ack_fpb.extended)) { return -ENOMEM; } break; } if (config->ack_fpb.addr != NULL) { if (!nrf_802154_pending_bit_for_addr_clear( config->ack_fpb.addr, config->ack_fpb.extended)) { return -ENOENT; } } else { nrf_802154_pending_bit_for_addr_reset( config->ack_fpb.extended); } break; case IEEE802154_CONFIG_PAN_COORDINATOR: nrf_802154_pan_coord_set(config->pan_coordinator); break; case IEEE802154_CONFIG_PROMISCUOUS: nrf_802154_promiscuous_set(config->promiscuous); break; case IEEE802154_CONFIG_EVENT_HANDLER: nrf5_data.event_handler = config->event_handler; break; #if defined(CONFIG_NRF_802154_ENCRYPTION) case IEEE802154_CONFIG_MAC_KEYS: nrf5_config_mac_keys(config->mac_keys); break; case IEEE802154_CONFIG_FRAME_COUNTER: nrf_802154_security_global_frame_counter_set(config->frame_counter); break; case IEEE802154_CONFIG_FRAME_COUNTER_IF_LARGER: nrf_802154_security_global_frame_counter_set_if_larger(config->frame_counter); break; #endif /* CONFIG_NRF_802154_ENCRYPTION */ case IEEE802154_CONFIG_ENH_ACK_HEADER_IE: { uint8_t short_addr_le[SHORT_ADDRESS_SIZE]; uint8_t ext_addr_le[EXTENDED_ADDRESS_SIZE]; sys_put_le16(config->ack_ie.short_addr, short_addr_le); /** * The extended address field passed to this function starts * with the most significant octet and ends with the least * significant octet (i.e. big endian byte order). * The IEEE 802.15.4 transmission order mandates this order to be * reversed (i.e. little endian byte order) in a transmitted frame. * * The nrf_802154_ack_data_set expects extended address in transmission * order. */ sys_memcpy_swap(ext_addr_le, config->ack_ie.ext_addr, EXTENDED_ADDRESS_SIZE); if (config->ack_ie.data_len > 0) { nrf_802154_ack_data_set(short_addr_le, false, config->ack_ie.data, config->ack_ie.data_len, NRF_802154_ACK_DATA_IE); nrf_802154_ack_data_set(ext_addr_le, true, config->ack_ie.data, config->ack_ie.data_len, NRF_802154_ACK_DATA_IE); } else { nrf_802154_ack_data_clear(short_addr_le, false, NRF_802154_ACK_DATA_IE); nrf_802154_ack_data_clear(ext_addr_le, true, NRF_802154_ACK_DATA_IE); } } break; #if defined(CONFIG_IEEE802154_CSL_ENDPOINT) case IEEE802154_CONFIG_CSL_RX_TIME: { nrf_802154_csl_writer_anchor_time_set(config->csl_rx_time / NSEC_PER_USEC); } break; case IEEE802154_CONFIG_RX_SLOT: { /* Note that even if the nrf_802154_receive_at function is not called in time * (for example due to the call being blocked by higher priority threads) and * the delayed reception window is not scheduled, the CSL phase will still be * calculated as if the following reception windows were at times * anchor_time + n * csl_period. The previously set * anchor_time will be used for calculations. */ nrf_802154_receive_at(config->rx_slot.start / NSEC_PER_USEC, config->rx_slot.duration / NSEC_PER_USEC, config->rx_slot.channel, DRX_SLOT_RX); } break; case IEEE802154_CONFIG_CSL_PERIOD: nrf_802154_csl_writer_period_set(config->csl_period); break; #endif /* CONFIG_IEEE802154_CSL_ENDPOINT */ #if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA) case IEEE802154_OPENTHREAD_CONFIG_MAX_EXTRA_CCA_ATTEMPTS: nrf5_data.max_extra_cca_attempts = ((const struct ieee802154_openthread_config *)config) ->max_extra_cca_attempts; break; #endif /* CONFIG_IEEE802154_NRF5_MULTIPLE_CCA */ default: return -EINVAL; } return 0; } /* driver-allocated attribute memory - constant across all driver instances */ IEEE802154_DEFINE_PHY_SUPPORTED_CHANNELS(drv_attr, 11, 26); static int nrf5_attr_get(const struct device *dev, enum ieee802154_attr attr, struct ieee802154_attr_value *value) { ARG_UNUSED(dev); if (ieee802154_attr_get_channel_page_and_range( attr, IEEE802154_ATTR_PHY_CHANNEL_PAGE_ZERO_OQPSK_2450_BPSK_868_915, &drv_attr.phy_supported_channels, value) == 0) { return 0; } switch ((uint32_t)attr) { #if defined(CONFIG_IEEE802154_NRF5_MULTIPLE_CCA) /* TODO: t_recca and t_ccatx should be provided by the public API of the * nRF 802.15.4 Radio Driver. */ case IEEE802154_OPENTHREAD_ATTR_T_RECCA: ((struct ieee802154_openthread_attr_value *)value)->t_recca = 0; break; case IEEE802154_OPENTHREAD_ATTR_T_CCATX: ((struct ieee802154_openthread_attr_value *)value)->t_ccatx = 20; break; #endif default: return -ENOENT; } return 0; } /* nRF5 radio driver callbacks */ void nrf_802154_received_timestamp_raw(uint8_t *data, int8_t power, uint8_t lqi, uint64_t time) { for (uint32_t i = 0; i < ARRAY_SIZE(nrf5_data.rx_frames); i++) { if (nrf5_data.rx_frames[i].psdu != NULL) { continue; } nrf5_data.rx_frames[i].psdu = data; nrf5_data.rx_frames[i].rssi = power; nrf5_data.rx_frames[i].lqi = lqi; #if defined(CONFIG_NET_PKT_TIMESTAMP) nrf5_data.rx_frames[i].time = nrf_802154_timestamp_end_to_phr_convert(time, data[0]); #endif if (data[ACK_REQUEST_BYTE] & ACK_REQUEST_BIT) { nrf5_data.rx_frames[i].ack_fpb = nrf5_data.last_frame_ack_fpb; } else { nrf5_data.rx_frames[i].ack_fpb = false; } nrf5_data.last_frame_ack_fpb = false; k_fifo_put(&nrf5_data.rx_fifo, &nrf5_data.rx_frames[i]); return; } __ASSERT(false, "Not enough rx frames allocated for 15.4 driver"); } void nrf_802154_receive_failed(nrf_802154_rx_error_t error, uint32_t id) { const struct device *dev = net_if_get_device(nrf5_data.iface); #if defined(CONFIG_IEEE802154_CSL_ENDPOINT) if (id == DRX_SLOT_RX) { __ASSERT_NO_MSG(nrf5_data.event_handler); #if !defined(CONFIG_IEEE802154_CSL_DEBUG) /* When CSL debug option is used we intentionally avoid notifying the higher layer * about the finalization of a DRX slot, so that the radio stays in receive state * for receiving "out of slot" frames. * As a side effect, regular failure notifications would be reported with the * incorrect ID. */ nrf5_data.event_handler(dev, IEEE802154_EVENT_RX_OFF, NULL); #endif if (error == NRF_802154_RX_ERROR_DELAYED_TIMEOUT) { return; } } #else ARG_UNUSED(id); #endif enum ieee802154_rx_fail_reason reason; switch (error) { case NRF_802154_RX_ERROR_INVALID_FRAME: case NRF_802154_RX_ERROR_DELAYED_TIMEOUT: reason = IEEE802154_RX_FAIL_NOT_RECEIVED; break; case NRF_802154_RX_ERROR_INVALID_FCS: reason = IEEE802154_RX_FAIL_INVALID_FCS; break; case NRF_802154_RX_ERROR_INVALID_DEST_ADDR: reason = IEEE802154_RX_FAIL_ADDR_FILTERED; break; default: reason = IEEE802154_RX_FAIL_OTHER; break; } if (IS_ENABLED(CONFIG_IEEE802154_NRF5_LOG_RX_FAILURES)) { LOG_INF("Rx failed, error = %d", error); } nrf5_data.last_frame_ack_fpb = false; if (nrf5_data.event_handler) { nrf5_data.event_handler(dev, IEEE802154_EVENT_RX_FAILED, (void *)&reason); } } void nrf_802154_tx_ack_started(const uint8_t *data) { nrf5_data.last_frame_ack_fpb = data[FRAME_PENDING_BYTE] & FRAME_PENDING_BIT; } void nrf_802154_transmitted_raw(uint8_t *frame, const nrf_802154_transmit_done_metadata_t *metadata) { ARG_UNUSED(frame); nrf5_data.tx_result = NRF_802154_TX_ERROR_NONE; nrf5_data.tx_frame_is_secured = metadata->frame_props.is_secured; nrf5_data.tx_frame_mac_hdr_rdy = metadata->frame_props.dynamic_data_is_set; nrf5_data.ack_frame.psdu = metadata->data.transmitted.p_ack; if (nrf5_data.ack_frame.psdu) { nrf5_data.ack_frame.rssi = metadata->data.transmitted.power; nrf5_data.ack_frame.lqi = metadata->data.transmitted.lqi; #if defined(CONFIG_NET_PKT_TIMESTAMP) nrf5_data.ack_frame.time = nrf_802154_timestamp_end_to_phr_convert( metadata->data.transmitted.time, nrf5_data.ack_frame.psdu[0]); #endif } k_sem_give(&nrf5_data.tx_wait); } void nrf_802154_transmit_failed(uint8_t *frame, nrf_802154_tx_error_t error, const nrf_802154_transmit_done_metadata_t *metadata) { ARG_UNUSED(frame); nrf5_data.tx_result = error; nrf5_data.tx_frame_is_secured = metadata->frame_props.is_secured; nrf5_data.tx_frame_mac_hdr_rdy = metadata->frame_props.dynamic_data_is_set; k_sem_give(&nrf5_data.tx_wait); } void nrf_802154_cca_done(bool channel_free) { nrf5_data.channel_free = channel_free; k_sem_give(&nrf5_data.cca_wait); } void nrf_802154_cca_failed(nrf_802154_cca_error_t error) { ARG_UNUSED(error); nrf5_data.channel_free = false; k_sem_give(&nrf5_data.cca_wait); } void nrf_802154_energy_detected(const nrf_802154_energy_detected_t *result) { if (nrf5_data.energy_scan_done != NULL) { energy_scan_done_cb_t callback = nrf5_data.energy_scan_done; nrf5_data.energy_scan_done = NULL; callback(net_if_get_device(nrf5_data.iface), result->ed_dbm); } } void nrf_802154_energy_detection_failed(nrf_802154_ed_error_t error) { if (nrf5_data.energy_scan_done != NULL) { energy_scan_done_cb_t callback = nrf5_data.energy_scan_done; nrf5_data.energy_scan_done = NULL; callback(net_if_get_device(nrf5_data.iface), SHRT_MAX); } } #if defined(CONFIG_NRF_802154_SER_HOST) void nrf_802154_serialization_error(const nrf_802154_ser_err_data_t *err) { __ASSERT(false, "802.15.4 serialization error: %d", err->reason); k_oops(); } #endif static const struct nrf5_802154_config nrf5_radio_cfg = { .irq_config_func = nrf5_irq_config, }; static struct ieee802154_radio_api nrf5_radio_api = { .iface_api.init = nrf5_iface_init, .get_capabilities = nrf5_get_capabilities, .cca = nrf5_cca, .set_channel = nrf5_set_channel, .filter = nrf5_filter, .set_txpower = nrf5_set_txpower, .start = nrf5_start, .stop = nrf5_stop, #if defined(CONFIG_NRF_802154_CARRIER_FUNCTIONS) .continuous_carrier = nrf5_continuous_carrier, #endif .tx = nrf5_tx, .ed_scan = nrf5_energy_scan_start, .get_time = nrf5_get_time, .get_sch_acc = nrf5_get_acc, .configure = nrf5_configure, .attr_get = nrf5_attr_get }; #if defined(CONFIG_NET_L2_IEEE802154) #define L2 IEEE802154_L2 #define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(IEEE802154_L2) #define MTU IEEE802154_MTU #elif defined(CONFIG_NET_L2_OPENTHREAD) #define L2 OPENTHREAD_L2 #define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(OPENTHREAD_L2) #define MTU 1280 #elif defined(CONFIG_NET_L2_CUSTOM_IEEE802154) #define L2 CUSTOM_IEEE802154_L2 #define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(CUSTOM_IEEE802154_L2) #define MTU CONFIG_NET_L2_CUSTOM_IEEE802154_MTU #endif #if defined(CONFIG_NET_L2_PHY_IEEE802154) NET_DEVICE_DT_INST_DEFINE(0, nrf5_init, NULL, &nrf5_data, &nrf5_radio_cfg, CONFIG_IEEE802154_NRF5_INIT_PRIO, &nrf5_radio_api, L2, L2_CTX_TYPE, MTU); #else DEVICE_DT_INST_DEFINE(0, nrf5_init, NULL, &nrf5_data, &nrf5_radio_cfg, POST_KERNEL, CONFIG_IEEE802154_NRF5_INIT_PRIO, &nrf5_radio_api); #endif