/* * Copyright (c) 2017 Intel Corporation * Copyright (c) 2021 Espressif Systems (Shanghai) Co., Ltd. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT espressif_esp32_gpio /* Include esp-idf headers first to avoid redefining BIT() macro */ #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SOC_ESP32C3 #include #else #include #endif #include #include #include #include LOG_MODULE_REGISTER(gpio_esp32, CONFIG_LOG_DEFAULT_LEVEL); #ifdef CONFIG_SOC_ESP32C3 /* gpio structs in esp32c3 series are different from xtensa ones */ #define out out.data #define in in.data #define out_w1ts out_w1ts.val #define out_w1tc out_w1tc.val /* arch_curr_cpu() is not available for riscv based chips */ #define CPU_ID() 0 #define ISR_HANDLER isr_handler_t #else #define CPU_ID() arch_curr_cpu()->id #define ISR_HANDLER intr_handler_t #endif #ifndef SOC_GPIO_SUPPORT_RTC_INDEPENDENT #define SOC_GPIO_SUPPORT_RTC_INDEPENDENT 0 #endif struct gpio_esp32_config { /* gpio_driver_config needs to be first */ struct gpio_driver_config drv_cfg; gpio_dev_t *const gpio_base; gpio_dev_t *const gpio_dev; const int gpio_port; }; struct gpio_esp32_data { /* gpio_driver_data needs to be first */ struct gpio_driver_data common; sys_slist_t cb; }; static inline bool rtc_gpio_is_valid_gpio(uint32_t gpio_num) { #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED return (gpio_num < SOC_GPIO_PIN_COUNT && rtc_io_num_map[gpio_num] >= 0); #else return false; #endif } static inline bool gpio_pin_is_valid(uint32_t pin) { return ((BIT(pin) & SOC_GPIO_VALID_GPIO_MASK) != 0); } static inline bool gpio_pin_is_output_capable(uint32_t pin) { return ((BIT(pin) & SOC_GPIO_VALID_OUTPUT_GPIO_MASK) != 0); } static int gpio_esp32_config(const struct device *dev, gpio_pin_t pin, gpio_flags_t flags) { const struct gpio_esp32_config *const cfg = dev->config; struct gpio_esp32_data *data = dev->data; uint32_t io_pin = (uint32_t) pin + ((cfg->gpio_port == 1 && pin < 32) ? 32 : 0); uint32_t key; int ret = 0; if (!gpio_pin_is_valid(io_pin)) { LOG_ERR("Selected IO pin is not valid."); return -EINVAL; } key = irq_lock(); #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED if (rtc_gpio_is_valid_gpio(io_pin)) { rtcio_hal_function_select(rtc_io_num_map[io_pin], RTCIO_FUNC_DIGITAL); } #endif if (io_pin >= GPIO_NUM_MAX) { LOG_ERR("Invalid pin."); ret = -EINVAL; goto end; } /* Set pin function as GPIO */ gpio_ll_iomux_func_sel(GPIO_PIN_MUX_REG[io_pin], PIN_FUNC_GPIO); if (flags & GPIO_PULL_UP) { if (!rtc_gpio_is_valid_gpio(io_pin) || SOC_GPIO_SUPPORT_RTC_INDEPENDENT) { gpio_ll_pullup_en(&GPIO, io_pin); } else { #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED int rtcio_num = rtc_io_num_map[io_pin]; if (rtc_io_desc[rtcio_num].pullup) { rtcio_hal_pullup_enable(rtcio_num); } else { ret = -ENOTSUP; goto end; } #endif } } else { if (!rtc_gpio_is_valid_gpio(io_pin) || SOC_GPIO_SUPPORT_RTC_INDEPENDENT) { gpio_ll_pullup_dis(&GPIO, io_pin); } else { #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED int rtcio_num = rtc_io_num_map[io_pin]; if (rtc_io_desc[rtcio_num].pullup) { rtcio_hal_pullup_disable(rtcio_num); } #else ret = -ENOTSUP; goto end; #endif } } if (flags & GPIO_SINGLE_ENDED) { if (flags & GPIO_LINE_OPEN_DRAIN) { gpio_ll_od_enable(cfg->gpio_base, io_pin); } else { LOG_ERR("GPIO configuration not supported"); ret = -ENOTSUP; goto end; } } else { gpio_ll_od_disable(cfg->gpio_base, io_pin); } if (flags & GPIO_PULL_DOWN) { if (!rtc_gpio_is_valid_gpio(io_pin) || SOC_GPIO_SUPPORT_RTC_INDEPENDENT) { gpio_ll_pulldown_en(&GPIO, io_pin); } else { #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED int rtcio_num = rtc_io_num_map[io_pin]; if (rtc_io_desc[rtcio_num].pulldown) { rtcio_hal_pulldown_enable(rtcio_num); } else { ret = -ENOTSUP; goto end; } #endif } } else { if (!rtc_gpio_is_valid_gpio(io_pin) || SOC_GPIO_SUPPORT_RTC_INDEPENDENT) { gpio_ll_pulldown_dis(&GPIO, io_pin); } else { #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED int rtcio_num = rtc_io_num_map[io_pin]; if (rtc_io_desc[rtcio_num].pulldown) { rtcio_hal_pulldown_disable(rtcio_num); } #else ret = -ENOTSUP; goto end; #endif } } if (flags & GPIO_OUTPUT) { if (!gpio_pin_is_output_capable(pin)) { LOG_ERR("GPIO can only be used as input"); ret = -EINVAL; goto end; } /* * By default, drive strength is set to its maximum value when the pin is set * to either low or high states. Alternative drive strength is weak-only, * while any other intermediary combination is considered invalid. */ switch (flags & ESP32_GPIO_DS_MASK) { case ESP32_GPIO_DS_DFLT: if (!rtc_gpio_is_valid_gpio(io_pin) || SOC_GPIO_SUPPORT_RTC_INDEPENDENT) { gpio_ll_set_drive_capability(cfg->gpio_base, io_pin, GPIO_DRIVE_CAP_3); } else { #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED rtcio_hal_set_drive_capability(rtc_io_num_map[io_pin], GPIO_DRIVE_CAP_3); #endif } break; case ESP32_GPIO_DS_ALT: if (!rtc_gpio_is_valid_gpio(io_pin) || SOC_GPIO_SUPPORT_RTC_INDEPENDENT) { gpio_ll_set_drive_capability(cfg->gpio_base, io_pin, GPIO_DRIVE_CAP_0); } else { #if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED rtcio_hal_set_drive_capability(rtc_io_num_map[io_pin], GPIO_DRIVE_CAP_0); #endif } break; default: ret = -EINVAL; goto end; } gpio_ll_output_enable(&GPIO, io_pin); esp_rom_gpio_matrix_out(io_pin, SIG_GPIO_OUT_IDX, false, false); /* Set output pin initial value */ if (flags & GPIO_OUTPUT_INIT_HIGH) { gpio_ll_set_level(cfg->gpio_base, io_pin, 1); } else if (flags & GPIO_OUTPUT_INIT_LOW) { gpio_ll_set_level(cfg->gpio_base, io_pin, 0); } } else { gpio_ll_output_disable(&GPIO, io_pin); } if (flags & GPIO_INPUT) { gpio_ll_input_enable(&GPIO, io_pin); } else { gpio_ll_input_disable(&GPIO, io_pin); } end: irq_unlock(key); return ret; } static int gpio_esp32_port_get_raw(const struct device *port, uint32_t *value) { const struct gpio_esp32_config *const cfg = port->config; if (cfg->gpio_port == 0) { *value = cfg->gpio_dev->in; #if DT_NODE_HAS_STATUS(DT_NODELABEL(gpio1), okay) } else { *value = cfg->gpio_dev->in1.data; #endif } return 0; } static int gpio_esp32_port_set_masked_raw(const struct device *port, uint32_t mask, uint32_t value) { const struct gpio_esp32_config *const cfg = port->config; uint32_t key = irq_lock(); if (cfg->gpio_port == 0) { cfg->gpio_dev->out = (cfg->gpio_dev->out & ~mask) | (mask & value); #if DT_NODE_HAS_STATUS(DT_NODELABEL(gpio1), okay) } else { cfg->gpio_dev->out1.data = (cfg->gpio_dev->out1.data & ~mask) | (mask & value); #endif } irq_unlock(key); return 0; } static int gpio_esp32_port_set_bits_raw(const struct device *port, uint32_t pins) { const struct gpio_esp32_config *const cfg = port->config; if (cfg->gpio_port == 0) { cfg->gpio_dev->out_w1ts = pins; #if DT_NODE_HAS_STATUS(DT_NODELABEL(gpio1), okay) } else { cfg->gpio_dev->out1_w1ts.data = pins; #endif } return 0; } static int gpio_esp32_port_clear_bits_raw(const struct device *port, uint32_t pins) { const struct gpio_esp32_config *const cfg = port->config; if (cfg->gpio_port == 0) { cfg->gpio_dev->out_w1tc = pins; #if DT_NODE_HAS_STATUS(DT_NODELABEL(gpio1), okay) } else { cfg->gpio_dev->out1_w1tc.data = pins; #endif } return 0; } static int gpio_esp32_port_toggle_bits(const struct device *port, uint32_t pins) { const struct gpio_esp32_config *const cfg = port->config; uint32_t key = irq_lock(); if (cfg->gpio_port == 0) { cfg->gpio_dev->out ^= pins; #if DT_NODE_HAS_STATUS(DT_NODELABEL(gpio1), okay) } else { cfg->gpio_dev->out1.data ^= pins; #endif } irq_unlock(key); return 0; } static int convert_int_type(enum gpio_int_mode mode, enum gpio_int_trig trig) { if (mode == GPIO_INT_MODE_DISABLED) { return GPIO_INTR_DISABLE; } if (mode == GPIO_INT_MODE_LEVEL) { switch (trig) { case GPIO_INT_TRIG_LOW: return GPIO_INTR_LOW_LEVEL; case GPIO_INT_TRIG_HIGH: return GPIO_INTR_HIGH_LEVEL; default: return -EINVAL; } } else { /* edge interrupts */ switch (trig) { case GPIO_INT_TRIG_HIGH: return GPIO_INTR_POSEDGE; case GPIO_INT_TRIG_LOW: return GPIO_INTR_NEGEDGE; case GPIO_INT_TRIG_BOTH: return GPIO_INTR_ANYEDGE; default: return -EINVAL; } } /* Any other type of interrupt triggering is invalid. */ return -EINVAL; } static int gpio_esp32_pin_interrupt_configure(const struct device *port, gpio_pin_t pin, enum gpio_int_mode mode, enum gpio_int_trig trig) { const struct gpio_esp32_config *const cfg = port->config; uint32_t io_pin = (uint32_t) pin + ((cfg->gpio_port == 1 && pin < 32) ? 32 : 0); int intr_trig_mode = convert_int_type(mode, trig); uint32_t key; if (intr_trig_mode < 0) { return intr_trig_mode; } key = irq_lock(); gpio_ll_set_intr_type(cfg->gpio_base, io_pin, intr_trig_mode); gpio_ll_intr_enable_on_core(cfg->gpio_base, CPU_ID(), io_pin); irq_unlock(key); return 0; } static int gpio_esp32_manage_callback(const struct device *dev, struct gpio_callback *callback, bool set) { struct gpio_esp32_data *data = dev->data; return gpio_manage_callback(&data->cb, callback, set); } static uint32_t gpio_esp32_get_pending_int(const struct device *dev) { const struct gpio_esp32_config *const cfg = dev->config; uint32_t irq_status; uint32_t const core_id = CPU_ID(); if (cfg->gpio_port == 0) { gpio_ll_get_intr_status(cfg->gpio_base, core_id, &irq_status); } else { gpio_ll_get_intr_status_high(cfg->gpio_base, core_id, &irq_status); } return irq_status; } static void IRAM_ATTR gpio_esp32_fire_callbacks(const struct device *dev) { const struct gpio_esp32_config *const cfg = dev->config; struct gpio_esp32_data *data = dev->data; uint32_t irq_status; uint32_t const core_id = CPU_ID(); if (cfg->gpio_port == 0) { gpio_ll_get_intr_status(cfg->gpio_base, core_id, &irq_status); gpio_ll_clear_intr_status(cfg->gpio_base, irq_status); } else { gpio_ll_get_intr_status_high(cfg->gpio_base, core_id, &irq_status); gpio_ll_clear_intr_status_high(cfg->gpio_base, irq_status); } if (irq_status != 0) { gpio_fire_callbacks(&data->cb, dev, irq_status); } } static void gpio_esp32_isr(void *param); static int gpio_esp32_init(const struct device *dev) { struct gpio_esp32_data *data = dev->data; static bool isr_connected; if (!isr_connected) { esp_intr_alloc(DT_IRQN(DT_NODELABEL(gpio0)), 0, (ISR_HANDLER)gpio_esp32_isr, (void *)dev, NULL); isr_connected = true; } return 0; } static const struct gpio_driver_api gpio_esp32_driver_api = { .pin_configure = gpio_esp32_config, .port_get_raw = gpio_esp32_port_get_raw, .port_set_masked_raw = gpio_esp32_port_set_masked_raw, .port_set_bits_raw = gpio_esp32_port_set_bits_raw, .port_clear_bits_raw = gpio_esp32_port_clear_bits_raw, .port_toggle_bits = gpio_esp32_port_toggle_bits, .pin_interrupt_configure = gpio_esp32_pin_interrupt_configure, .manage_callback = gpio_esp32_manage_callback, .get_pending_int = gpio_esp32_get_pending_int }; #define ESP_SOC_GPIO_INIT(_id) \ static struct gpio_esp32_data gpio_data_##_id; \ static struct gpio_esp32_config gpio_config_##_id = { \ .drv_cfg = { \ .port_pin_mask = GPIO_PORT_PIN_MASK_FROM_DT_INST(_id), \ }, \ .gpio_base = (gpio_dev_t *)DT_REG_ADDR(DT_NODELABEL(gpio0)), \ .gpio_dev = (gpio_dev_t *)DT_REG_ADDR(DT_NODELABEL(gpio##_id)), \ .gpio_port = _id \ }; \ DEVICE_DT_DEFINE(DT_NODELABEL(gpio##_id), \ &gpio_esp32_init, \ NULL, \ &gpio_data_##_id, \ &gpio_config_##_id, \ PRE_KERNEL_1, \ CONFIG_GPIO_INIT_PRIORITY, \ &gpio_esp32_driver_api); DT_INST_FOREACH_STATUS_OKAY(ESP_SOC_GPIO_INIT); static void IRAM_ATTR gpio_esp32_isr(void *param) { ARG_UNUSED(param); #if DT_NODE_HAS_STATUS(DT_NODELABEL(gpio0), okay) gpio_esp32_fire_callbacks(DEVICE_DT_INST_GET(0)); #endif #if DT_NODE_HAS_STATUS(DT_NODELABEL(gpio1), okay) gpio_esp32_fire_callbacks(DEVICE_DT_INST_GET(1)); #endif }