/* ieee802154_cc1200.c - TI CC1200 driver */ #define DT_DRV_COMPAT ti_cc1200 /* * Copyright (c) 2017 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #define LOG_MODULE_NAME ieee802154_cc1200 #define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL #include LOG_MODULE_REGISTER(LOG_MODULE_NAME); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee802154_cc1200.h" #include "ieee802154_cc1200_rf.h" /* ToDo: supporting 802.15.4g will require GPIO2 * used as CC1200_GPIO_SIG_RXFIFO_THR * * Note: GPIO3 is unused. */ #define CC1200_IOCFG3 CC1200_GPIO_SIG_MARC_2PIN_STATUS_0 #define CC1200_IOCFG2 CC1200_GPIO_SIG_MARC_2PIN_STATUS_1 #define CC1200_IOCFG0 CC1200_GPIO_SIG_PKT_SYNC_RXTX /*********************** * Debugging functions * **********************/ static void cc1200_print_status(uint8_t status) { if (status == CC1200_STATUS_IDLE) { LOG_DBG("Idling"); } else if (status == CC1200_STATUS_RX) { LOG_DBG("Receiving"); } else if (status == CC1200_STATUS_TX) { LOG_DBG("Transmitting"); } else if (status == CC1200_STATUS_FSTXON) { LOG_DBG("FS TX on"); } else if (status == CC1200_STATUS_CALIBRATE) { LOG_DBG("Calibrating"); } else if (status == CC1200_STATUS_SETTLING) { LOG_DBG("Settling"); } else if (status == CC1200_STATUS_RX_FIFO_ERROR) { LOG_DBG("RX FIFO error!"); } else if (status == CC1200_STATUS_TX_FIFO_ERROR) { LOG_DBG("TX FIFO error!"); } } /********************* * Generic functions * ********************/ bool z_cc1200_access_reg(const struct device *dev, bool read, uint8_t addr, void *data, size_t length, bool extended, bool burst) { const struct cc1200_config *config = dev->config; uint8_t cmd_buf[2]; const struct spi_buf buf[2] = { { .buf = cmd_buf, .len = extended ? 2 : 1, }, { .buf = data, .len = length, } }; struct spi_buf_set tx = { .buffers = buf }; cmd_buf[0] = 0U; if (burst) { cmd_buf[0] |= CC1200_ACCESS_BURST; } if (extended) { cmd_buf[0] |= CC1200_REG_EXTENDED_ADDRESS; cmd_buf[1] = addr; } else { cmd_buf[0] |= addr; } if (read) { const struct spi_buf_set rx = { .buffers = buf, .count = 2 }; cmd_buf[0] |= CC1200_ACCESS_RD; tx.count = 1; return (spi_transceive_dt(&config->bus, &tx, &rx) == 0); } /* CC1200_ACCESS_WR is 0 so no need to play with it */ tx.count = data ? 2 : 1; return (spi_write_dt(&config->bus, &tx) == 0); } static inline uint8_t *get_mac(const struct device *dev) { struct cc1200_context *cc1200 = dev->data; #if defined(CONFIG_IEEE802154_CC1200_RANDOM_MAC) uint32_t *ptr = (uint32_t *)(cc1200->mac_addr + 4); UNALIGNED_PUT(sys_rand32_get(), ptr); cc1200->mac_addr[7] = (cc1200->mac_addr[7] & ~0x01) | 0x02; #else cc1200->mac_addr[4] = CONFIG_IEEE802154_CC1200_MAC4; cc1200->mac_addr[5] = CONFIG_IEEE802154_CC1200_MAC5; cc1200->mac_addr[6] = CONFIG_IEEE802154_CC1200_MAC6; cc1200->mac_addr[7] = CONFIG_IEEE802154_CC1200_MAC7; #endif cc1200->mac_addr[0] = 0x00; cc1200->mac_addr[1] = 0x12; cc1200->mac_addr[2] = 0x4b; cc1200->mac_addr[3] = 0x00; return cc1200->mac_addr; } static uint8_t get_status(const struct device *dev) { uint8_t val; if (z_cc1200_access_reg(dev, true, CC1200_INS_SNOP, &val, 1, false, false)) { /* See Section 3.1.2 */ return val & CC1200_STATUS_MASK; } /* We cannot get the status, so let's assume about readiness */ return CC1200_STATUS_CHIP_NOT_READY; } /****************** * GPIO functions * *****************/ static inline void gpio0_int_handler(const struct device *port, struct gpio_callback *cb, uint32_t pins) { struct cc1200_context *cc1200 = CONTAINER_OF(cb, struct cc1200_context, rx_tx_cb); if (atomic_get(&cc1200->tx) == 1) { if (atomic_get(&cc1200->tx_start) == 0) { atomic_set(&cc1200->tx_start, 1); } else { atomic_set(&cc1200->tx, 0); } k_sem_give(&cc1200->tx_sync); } else { if (atomic_get(&cc1200->rx) == 1) { k_sem_give(&cc1200->rx_lock); atomic_set(&cc1200->rx, 0); } else { atomic_set(&cc1200->rx, 1); } } } static void enable_gpio0_interrupt(const struct device *dev, bool enable) { const struct cc1200_config *cfg = dev->config; gpio_flags_t mode = enable ? GPIO_INT_EDGE_TO_ACTIVE : GPIO_INT_DISABLE; gpio_pin_interrupt_configure_dt(&cfg->interrupt, mode); } static int setup_gpio_callback(const struct device *dev) { const struct cc1200_config *cfg = dev->config; struct cc1200_context *cc1200 = dev->data; gpio_init_callback(&cc1200->rx_tx_cb, gpio0_int_handler, BIT(cfg->interrupt.pin)); if (gpio_add_callback(cfg->interrupt.port, &cc1200->rx_tx_cb) != 0) { return -EIO; } return 0; } /**************** * RF functions * ***************/ static uint8_t get_lo_divider(const struct device *dev) { /* See Table 34 */ return FSD_BANDSELECT(read_reg_fs_cfg(dev)) << 1; } static bool write_reg_freq(const struct device *dev, uint32_t freq) { uint8_t freq_data[3]; freq_data[0] = (uint8_t)((freq & 0x00FF0000) >> 16); freq_data[1] = (uint8_t)((freq & 0x0000FF00) >> 8); freq_data[2] = (uint8_t)(freq & 0x000000FF); return z_cc1200_access_reg(dev, false, CC1200_REG_FREQ2, freq_data, 3, true, true); } /* See Section 9.12 - RF programming * * The given formula in datasheet cannot be simply applied here, where CPU * limits us to unsigned integers of 32 bits. Instead, "slicing" it to * parts that fits in such limit is a solution which is applied below. * * The original formula being (freqoff is neglected): * Freq = ( RF * Lo_Div * 2^16 ) / Xtal * * RF and Xtal are, from here, expressed in KHz. * * It first calculates the targeted RF with given ChanCenterFreq0, channel * spacing and the channel number. * * The calculation will slice the targeted RF by multiple of 10: * 10^n where n is in [5, 3]. The rest, below 1000, is taken at once. * Let's take the 434000 KHz RF for instance: * it will be "sliced" in 3 parts: 400000, 30000, 4000. * Or the 169406 KHz RF, 4 parts: 100000, 60000, 9000, 406. * * This permits also to play with Xtal to keep the result big enough to avoid * losing precision. A factor - growing as much as Xtal decrease - is then * applied to get to the proper result. Which one is rounded to the nearest * integer, again to get a bit better precision. * * In the end, this algorithm below works for all the supported bands by CC1200. * User does not need to pass anything extra besides the nominal settings: no * pre-computed part or else. */ static uint32_t rf_evaluate_freq_setting(const struct device *dev, uint32_t chan) { struct cc1200_context *ctx = dev->data; uint32_t xtal = CONFIG_IEEE802154_CC1200_XOSC; uint32_t mult_10 = 100000U; uint32_t factor = 1U; uint32_t freq = 0U; uint32_t rf, lo_div; rf = ctx->rf_settings->chan_center_freq0 + ((chan * (uint32_t)ctx->rf_settings->channel_spacing) / 10U); lo_div = get_lo_divider(dev); LOG_DBG("Calculating freq for %u KHz RF (%u)", rf, lo_div); while (rf > 0) { uint32_t hz, freq_tmp, rst; if (rf < 1000) { hz = rf; } else { hz = rf / mult_10; hz *= mult_10; } if (hz < 1000) { freq_tmp = (hz * lo_div * 65536U) / xtal; } else { freq_tmp = ((hz * lo_div) / xtal) * 65536U; } rst = freq_tmp % factor; freq_tmp /= factor; if (factor > 1 && (rst/(factor/10U)) > 5) { freq_tmp++; } freq += freq_tmp; factor *= 10U; mult_10 /= 10U; xtal /= 10U; rf -= hz; } LOG_DBG("FREQ is 0x%06X", freq); return freq; } static bool rf_install_settings(const struct device *dev, const struct cc1200_rf_registers_set *rf_settings) { struct cc1200_context *cc1200 = dev->data; if (!z_cc1200_access_reg(dev, false, CC1200_REG_SYNC3, (void *)rf_settings->registers, CC1200_RF_NON_EXT_SPACE_REGS, false, true) || !z_cc1200_access_reg(dev, false, CC1200_REG_IF_MIX_CFG, (uint8_t *)rf_settings->registers + CC1200_RF_NON_EXT_SPACE_REGS, CC1200_RF_EXT_SPACE_REGS, true, true) || !write_reg_pkt_len(dev, 0xFF)) { LOG_ERR("Could not install RF settings"); return false; } cc1200->rf_settings = rf_settings; return true; } static int rf_calibrate(const struct device *dev) { if (!instruct_scal(dev)) { LOG_ERR("Could not calibrate RF"); return -EIO; } k_busy_wait(USEC_PER_MSEC * 5U); /* We need to re-enable RX as SCAL shuts off the freq synth */ if (!instruct_sidle(dev) || !instruct_sfrx(dev) || !instruct_srx(dev)) { LOG_ERR("Could not switch to RX"); return -EIO; } k_busy_wait(USEC_PER_MSEC * 10U); cc1200_print_status(get_status(dev)); return 0; } /**************** * TX functions * ***************/ static inline bool write_txfifo(const struct device *dev, void *data, size_t length) { return z_cc1200_access_reg(dev, false, CC1200_REG_TXFIFO, data, length, false, true); } /**************** * RX functions * ***************/ static inline bool read_rxfifo(const struct device *dev, void *data, size_t length) { return z_cc1200_access_reg(dev, true, CC1200_REG_RXFIFO, data, length, false, true); } static inline uint8_t get_packet_length(const struct device *dev) { uint8_t len; if (z_cc1200_access_reg(dev, true, CC1200_REG_RXFIFO, &len, 1, false, true)) { return len; } return 0; } static inline bool verify_rxfifo_validity(const struct device *dev, uint8_t pkt_len) { /* packet should be at least 3 bytes as a ACK */ if (pkt_len < 3 || read_reg_num_rxbytes(dev) > (pkt_len + CC1200_FCS_LEN)) { return false; } return true; } static inline bool read_rxfifo_content(const struct device *dev, struct net_buf *buf, uint8_t len) { if (!read_rxfifo(dev, buf->data, len) || (get_status(dev) == CC1200_STATUS_RX_FIFO_ERROR)) { return false; } net_buf_add(buf, len); return true; } static inline bool verify_crc(const struct device *dev, struct net_pkt *pkt) { uint8_t status[2]; int8_t rssi; if (!read_rxfifo(dev, status, 2)) { return false; } if (!(status[1] & CC1200_FCS_CRC_OK)) { return false; } rssi = (int8_t) status[0]; net_pkt_set_ieee802154_rssi_dbm( pkt, rssi == CC1200_INVALID_RSSI ? IEEE802154_MAC_RSSI_DBM_UNDEFINED : rssi); net_pkt_set_ieee802154_lqi(pkt, status[1] & CC1200_FCS_LQI_MASK); return true; } static void cc1200_rx(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); const struct device *dev = p1; struct cc1200_context *cc1200 = dev->data; struct net_pkt *pkt; uint8_t pkt_len; while (1) { pkt = NULL; k_sem_take(&cc1200->rx_lock, K_FOREVER); if (get_status(dev) == CC1200_STATUS_RX_FIFO_ERROR) { LOG_ERR("Fifo error"); goto flush; } pkt_len = get_packet_length(dev); if (!verify_rxfifo_validity(dev, pkt_len)) { LOG_ERR("Invalid frame"); goto flush; } pkt = net_pkt_rx_alloc_with_buffer(cc1200->iface, pkt_len, AF_UNSPEC, 0, K_NO_WAIT); if (!pkt) { LOG_ERR("No free pkt available"); goto flush; } if (!read_rxfifo_content(dev, pkt->buffer, pkt_len)) { LOG_ERR("No content read"); goto flush; } if (!verify_crc(dev, pkt)) { LOG_ERR("Bad packet CRC"); goto out; } if (ieee802154_handle_ack(cc1200->iface, pkt) == NET_OK) { LOG_DBG("ACK packet handled"); goto out; } LOG_DBG("Caught a packet (%u)", pkt_len); if (net_recv_data(cc1200->iface, pkt) < 0) { LOG_DBG("Packet dropped by NET stack"); goto out; } log_stack_usage(&cc1200->rx_thread); continue; flush: LOG_DBG("Flushing RX"); instruct_sidle(dev); instruct_sfrx(dev); instruct_srx(dev); out: if (pkt) { net_pkt_unref(pkt); } } } /******************** * Radio device API * *******************/ static enum ieee802154_hw_caps cc1200_get_capabilities(const struct device *dev) { return IEEE802154_HW_FCS; } static int cc1200_cca(const struct device *dev) { struct cc1200_context *cc1200 = dev->data; if (atomic_get(&cc1200->rx) == 0) { uint8_t status = read_reg_rssi0(dev); if (!(status & CARRIER_SENSE) && (status & CARRIER_SENSE_VALID)) { return 0; } } LOG_WRN("Busy"); return -EBUSY; } static int cc1200_set_channel(const struct device *dev, uint16_t channel) { struct cc1200_context *cc1200 = dev->data; uint32_t freq; /* As SUN FSK provides a host of configurations with extremely different * channel counts it doesn't make sense to validate (aka -EINVAL) a * global upper limit on the number of supported channels on this page. */ if (channel > IEEE802154_CC1200_CHANNEL_LIMIT) { return -ENOTSUP; } /* Unlike usual 15.4 chips, cc1200 is closer to a bare metal radio modem * and thus does not provide any means to select a channel directly, but * requires instead that one calculates and configures the actual * targeted frequency for the requested channel. * * See rf_evaluate_freq_setting() above. */ if (atomic_get(&cc1200->rx) != 0) { return -EIO; } freq = rf_evaluate_freq_setting(dev, channel); if (!write_reg_freq(dev, freq) || rf_calibrate(dev)) { LOG_ERR("Could not set channel %u", channel); return -EIO; } return 0; } static int cc1200_set_txpower(const struct device *dev, int16_t dbm) { uint8_t pa_power_ramp; LOG_DBG("%d dbm", dbm); /* See Section 7.1 */ dbm = ((dbm + 18) * 2) - 1; if ((dbm <= 3) || (dbm >= 64)) { LOG_ERR("Unhandled value"); return -EINVAL; } pa_power_ramp = read_reg_pa_cfg1(dev) & ~PA_POWER_RAMP_MASK; pa_power_ramp |= ((uint8_t) dbm) & PA_POWER_RAMP_MASK; if (!write_reg_pa_cfg1(dev, pa_power_ramp)) { LOG_ERR("Could not proceed"); return -EIO; } return 0; } static int cc1200_tx(const struct device *dev, enum ieee802154_tx_mode mode, struct net_pkt *pkt, struct net_buf *frag) { struct cc1200_context *cc1200 = dev->data; uint8_t *frame = frag->data; uint8_t len = frag->len; bool status = false; if (mode != IEEE802154_TX_MODE_DIRECT) { NET_ERR("TX mode %d not supported", mode); return -ENOTSUP; } LOG_DBG("%p (%u)", frag, len); /* ToDo: * Supporting 802.15.4g will require to loop in pkt's frags * depending on len value, this will also take more time. */ if (!instruct_sidle(dev) || !instruct_sfrx(dev) || !instruct_sftx(dev) || !instruct_sfstxon(dev)) { LOG_ERR("Cannot switch to TX mode"); goto out; } if (!write_txfifo(dev, &len, CC1200_PHY_HDR_LEN) || !write_txfifo(dev, frame, len) || read_reg_num_txbytes(dev) != (len + CC1200_PHY_HDR_LEN)) { LOG_ERR("Cannot fill-in TX fifo"); goto out; } atomic_set(&cc1200->tx, 1); atomic_set(&cc1200->tx_start, 0); if (!instruct_stx(dev)) { LOG_ERR("Cannot start transmission"); goto out; } /* Wait for SYNC to be sent */ k_sem_take(&cc1200->tx_sync, K_MSEC(100)); if (atomic_get(&cc1200->tx_start) == 1) { /* Now wait for the packet to be fully sent */ k_sem_take(&cc1200->tx_sync, K_MSEC(100)); } out: cc1200_print_status(get_status(dev)); if (atomic_get(&cc1200->tx) == 1 && read_reg_num_txbytes(dev) != 0) { LOG_ERR("TX Failed"); atomic_set(&cc1200->tx_start, 0); instruct_sftx(dev); status = false; } else { status = true; } atomic_set(&cc1200->tx, 0); /* Get back to RX */ instruct_srx(dev); return status ? 0 : -EIO; } static int cc1200_start(const struct device *dev) { if (!instruct_sidle(dev) || !instruct_sftx(dev) || !instruct_sfrx(dev) || rf_calibrate(dev)) { LOG_ERR("Could not proceed"); return -EIO; } enable_gpio0_interrupt(dev, true); cc1200_print_status(get_status(dev)); return 0; } static int cc1200_stop(const struct device *dev) { enable_gpio0_interrupt(dev, false); if (!instruct_spwd(dev)) { LOG_ERR("Could not proceed"); return -EIO; } return 0; } /* driver-allocated attribute memory - constant across all driver instances as * this driver's channel range is configured via a global KConfig setting. */ IEEE802154_DEFINE_PHY_SUPPORTED_CHANNELS(drv_attr, 0, IEEE802154_CC1200_CHANNEL_LIMIT); static int cc1200_attr_get(const struct device *dev, enum ieee802154_attr attr, struct ieee802154_attr_value *value) { ARG_UNUSED(dev); return ieee802154_attr_get_channel_page_and_range( attr, IEEE802154_ATTR_PHY_CHANNEL_PAGE_NINE_SUN_PREDEFINED, &drv_attr.phy_supported_channels, value); } /****************** * Initialization * *****************/ static int power_on_and_setup(const struct device *dev) { if (!instruct_sres(dev)) { LOG_ERR("Cannot reset"); return -EIO; } if (!rf_install_settings(dev, &cc1200_rf_settings)) { return -EIO; } if (!write_reg_iocfg3(dev, CC1200_IOCFG3) || !write_reg_iocfg2(dev, CC1200_IOCFG2) || !write_reg_iocfg0(dev, CC1200_IOCFG0)) { LOG_ERR("Cannot configure GPIOs"); return -EIO; } if (setup_gpio_callback(dev) != 0) { return -EIO; } return rf_calibrate(dev); } static int cc1200_init(const struct device *dev) { const struct cc1200_config *config = dev->config; struct cc1200_context *cc1200 = dev->data; atomic_set(&cc1200->tx, 0); atomic_set(&cc1200->tx_start, 0); atomic_set(&cc1200->rx, 0); k_sem_init(&cc1200->rx_lock, 0, 1); k_sem_init(&cc1200->tx_sync, 0, 1); /* Configure GPIOs */ if (!gpio_is_ready_dt(&config->interrupt)) { LOG_ERR("GPIO port %s is not ready", config->interrupt.port->name); return -ENODEV; } gpio_pin_configure_dt(&config->interrupt, GPIO_INPUT); if (!spi_is_ready_dt(&config->bus)) { LOG_ERR("SPI bus %s is not ready", config->bus.bus->name); return -ENODEV; } LOG_DBG("GPIO and SPI configured"); if (power_on_and_setup(dev) != 0) { LOG_ERR("Configuring CC1200 failed"); return -EIO; } k_thread_create(&cc1200->rx_thread, cc1200->rx_stack, CONFIG_IEEE802154_CC1200_RX_STACK_SIZE, cc1200_rx, (void *)dev, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT); k_thread_name_set(&cc1200->rx_thread, "cc1200_rx"); LOG_INF("CC1200 initialized"); return 0; } static void cc1200_iface_init(struct net_if *iface) { const struct device *dev = net_if_get_device(iface); struct cc1200_context *cc1200 = dev->data; uint8_t *mac = get_mac(dev); LOG_DBG(""); net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154); cc1200->iface = iface; ieee802154_init(iface); } static const struct cc1200_config cc1200_config = { .bus = SPI_DT_SPEC_INST_GET(0, SPI_WORD_SET(8), 0), .interrupt = GPIO_DT_SPEC_INST_GET(0, int_gpios) }; static struct cc1200_context cc1200_context_data; static const struct ieee802154_radio_api cc1200_radio_api = { .iface_api.init = cc1200_iface_init, .get_capabilities = cc1200_get_capabilities, .cca = cc1200_cca, .set_channel = cc1200_set_channel, .set_txpower = cc1200_set_txpower, .tx = cc1200_tx, .start = cc1200_start, .stop = cc1200_stop, .attr_get = cc1200_attr_get, }; NET_DEVICE_DT_INST_DEFINE(0, cc1200_init, NULL, &cc1200_context_data, &cc1200_config, CONFIG_IEEE802154_CC1200_INIT_PRIO, &cc1200_radio_api, IEEE802154_L2, NET_L2_GET_CTX_TYPE(IEEE802154_L2), 125);