/* * Copyright (c) 2015 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT snps_designware_spi /* spi_dw.c - Designware SPI driver implementation */ #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL #include LOG_MODULE_REGISTER(spi_dw); #if (CONFIG_SPI_LOG_LEVEL == 4) #define DBG_COUNTER_INIT() \ uint32_t __cnt = 0 #define DBG_COUNTER_INC() \ (__cnt++) #define DBG_COUNTER_RESULT() \ (__cnt) #else #define DBG_COUNTER_INIT() {; } #define DBG_COUNTER_INC() {; } #define DBG_COUNTER_RESULT() 0 #endif #include #include #include #include #include #include #include #include #ifdef CONFIG_IOAPIC #include #endif #include #include "spi_dw.h" #include "spi_context.h" static inline bool spi_dw_is_slave(struct spi_dw_data *spi) { return (IS_ENABLED(CONFIG_SPI_SLAVE) && spi_context_is_slave(&spi->ctx)); } static void completed(const struct device *dev, int error) { const struct spi_dw_config *info = dev->config; struct spi_dw_data *spi = dev->data; if (error) { goto out; } if (spi_context_tx_on(&spi->ctx) || spi_context_rx_on(&spi->ctx)) { return; } out: /* need to give time for FIFOs to drain before issuing more commands */ while (test_bit_sr_busy(info->regs)) { } /* Disabling interrupts */ write_imr(DW_SPI_IMR_MASK, info->regs); /* Disabling the controller */ clear_bit_ssienr(info->regs); spi_context_cs_control(&spi->ctx, false); LOG_DBG("SPI transaction completed %s error", error ? "with" : "without"); spi_context_complete(&spi->ctx, error); } static void push_data(const struct device *dev) { const struct spi_dw_config *info = dev->config; struct spi_dw_data *spi = dev->data; uint32_t data = 0U; uint32_t f_tx; DBG_COUNTER_INIT(); if (spi_context_rx_on(&spi->ctx)) { f_tx = DW_SPI_FIFO_DEPTH - read_txflr(info->regs) - read_rxflr(info->regs); if ((int)f_tx < 0) { f_tx = 0U; /* if rx-fifo is full, hold off tx */ } } else { f_tx = DW_SPI_FIFO_DEPTH - read_txflr(info->regs); } while (f_tx) { if (spi_context_tx_buf_on(&spi->ctx)) { switch (spi->dfs) { case 1: data = UNALIGNED_GET((uint8_t *) (spi->ctx.tx_buf)); break; case 2: data = UNALIGNED_GET((uint16_t *) (spi->ctx.tx_buf)); break; #ifndef CONFIG_ARC case 4: data = UNALIGNED_GET((uint32_t *) (spi->ctx.tx_buf)); break; #endif } } else if (spi_context_rx_on(&spi->ctx)) { /* No need to push more than necessary */ if ((int)(spi->ctx.rx_len - spi->fifo_diff) <= 0) { break; } data = 0U; } else if (spi_context_tx_on(&spi->ctx)) { data = 0U; } else { /* Nothing to push anymore */ break; } write_dr(data, info->regs); spi_context_update_tx(&spi->ctx, spi->dfs, 1); spi->fifo_diff++; f_tx--; DBG_COUNTER_INC(); } if (!spi_context_tx_on(&spi->ctx)) { /* prevents any further interrupts demanding TX fifo fill */ write_txftlr(0, info->regs); } LOG_DBG("Pushed: %d", DBG_COUNTER_RESULT()); } static void pull_data(const struct device *dev) { const struct spi_dw_config *info = dev->config; struct spi_dw_data *spi = dev->data; DBG_COUNTER_INIT(); while (read_rxflr(info->regs)) { uint32_t data = read_dr(info->regs); DBG_COUNTER_INC(); if (spi_context_rx_buf_on(&spi->ctx)) { switch (spi->dfs) { case 1: UNALIGNED_PUT(data, (uint8_t *)spi->ctx.rx_buf); break; case 2: UNALIGNED_PUT(data, (uint16_t *)spi->ctx.rx_buf); break; #ifndef CONFIG_ARC case 4: UNALIGNED_PUT(data, (uint32_t *)spi->ctx.rx_buf); break; #endif } } spi_context_update_rx(&spi->ctx, spi->dfs, 1); spi->fifo_diff--; } if (!spi->ctx.rx_len && spi->ctx.tx_len < DW_SPI_FIFO_DEPTH) { write_rxftlr(spi->ctx.tx_len - 1, info->regs); } else if (read_rxftlr(info->regs) >= spi->ctx.rx_len) { write_rxftlr(spi->ctx.rx_len - 1, info->regs); } LOG_DBG("Pulled: %d", DBG_COUNTER_RESULT()); } static int spi_dw_configure(const struct spi_dw_config *info, struct spi_dw_data *spi, const struct spi_config *config) { uint32_t ctrlr0 = 0U; LOG_DBG("%p (prev %p)", config, spi->ctx.config); if (spi_context_configured(&spi->ctx, config)) { /* Nothing to do */ return 0; } /* Verify if requested op mode is relevant to this controller */ if (config->operation & SPI_OP_MODE_SLAVE) { if (!(info->op_modes & SPI_CTX_RUNTIME_OP_MODE_SLAVE)) { LOG_ERR("Slave mode not supported"); return -ENOTSUP; } } else { if (!(info->op_modes & SPI_CTX_RUNTIME_OP_MODE_MASTER)) { LOG_ERR("Master mode not supported"); return -ENOTSUP; } } if (config->operation & (SPI_TRANSFER_LSB | SPI_LINES_DUAL | SPI_LINES_QUAD)) { LOG_ERR("Unsupported configuration"); return -EINVAL; } /* Word size */ ctrlr0 |= DW_SPI_CTRLR0_DFS(SPI_WORD_SIZE_GET(config->operation)); /* Determine how many bytes are required per-frame */ spi->dfs = SPI_WS_TO_DFS(SPI_WORD_SIZE_GET(config->operation)); /* SPI mode */ if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) { ctrlr0 |= DW_SPI_CTRLR0_SCPOL; } if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) { ctrlr0 |= DW_SPI_CTRLR0_SCPH; } if (SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) { ctrlr0 |= DW_SPI_CTRLR0_SRL; } /* Installing the configuration */ write_ctrlr0(ctrlr0, info->regs); /* At this point, it's mandatory to set this on the context! */ spi->ctx.config = config; if (!spi_dw_is_slave(spi)) { /* Baud rate and Slave select, for master only */ write_baudr(SPI_DW_CLK_DIVIDER(info->clock_frequency, config->frequency), info->regs); write_ser(1 << config->slave, info->regs); } spi_context_cs_configure(&spi->ctx); if (spi_dw_is_slave(spi)) { LOG_DBG("Installed slave config %p:" " ws/dfs %u/%u, mode %u/%u/%u", config, SPI_WORD_SIZE_GET(config->operation), spi->dfs, (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0, (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0, (SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) ? 1 : 0); } else { LOG_DBG("Installed master config %p: freq %uHz (div = %u)," " ws/dfs %u/%u, mode %u/%u/%u, slave %u", config, config->frequency, SPI_DW_CLK_DIVIDER(info->clock_frequency, config->frequency), SPI_WORD_SIZE_GET(config->operation), spi->dfs, (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0, (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0, (SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) ? 1 : 0, config->slave); } return 0; } static uint32_t spi_dw_compute_ndf(const struct spi_buf *rx_bufs, size_t rx_count, uint8_t dfs) { uint32_t len = 0U; for (; rx_count; rx_bufs++, rx_count--) { if (len > (UINT16_MAX - rx_bufs->len)) { goto error; } len += rx_bufs->len; } if (len) { return (len / dfs) - 1; } error: return UINT32_MAX; } static void spi_dw_update_txftlr(const struct spi_dw_config *info, struct spi_dw_data *spi) { uint32_t reg_data = DW_SPI_TXFTLR_DFLT; if (spi_dw_is_slave(spi)) { if (!spi->ctx.tx_len) { reg_data = 0U; } else if (spi->ctx.tx_len < DW_SPI_TXFTLR_DFLT) { reg_data = spi->ctx.tx_len - 1; } } LOG_DBG("TxFTLR: %u", reg_data); write_txftlr(reg_data, info->regs); } static int transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, struct k_poll_signal *signal) { const struct spi_dw_config *info = dev->config; struct spi_dw_data *spi = dev->data; uint32_t tmod = DW_SPI_CTRLR0_TMOD_TX_RX; uint32_t reg_data; int ret; spi_context_lock(&spi->ctx, asynchronous, signal, config); #ifdef CONFIG_PM_DEVICE if (device_busy_check(dev) != (-EBUSY)) { device_busy_set(dev); } #endif /* CONFIG_PM_DEVICE */ /* Configure */ ret = spi_dw_configure(info, spi, config); if (ret) { goto out; } if (!rx_bufs || !rx_bufs->buffers) { tmod = DW_SPI_CTRLR0_TMOD_TX; } else if (!tx_bufs || !tx_bufs->buffers) { tmod = DW_SPI_CTRLR0_TMOD_RX; } /* ToDo: add a way to determine EEPROM mode */ if (tmod >= DW_SPI_CTRLR0_TMOD_RX && !spi_dw_is_slave(spi)) { reg_data = spi_dw_compute_ndf(rx_bufs->buffers, rx_bufs->count, spi->dfs); if (reg_data == UINT32_MAX) { ret = -EINVAL; goto out; } write_ctrlr1(reg_data, info->regs); } else { write_ctrlr1(0, info->regs); } if (spi_dw_is_slave(spi)) { /* Enabling MISO line relevantly */ if (tmod == DW_SPI_CTRLR0_TMOD_RX) { tmod |= DW_SPI_CTRLR0_SLV_OE; } else { tmod &= ~DW_SPI_CTRLR0_SLV_OE; } } /* Updating TMOD in CTRLR0 register */ reg_data = read_ctrlr0(info->regs); reg_data &= ~DW_SPI_CTRLR0_TMOD_RESET; reg_data |= tmod; write_ctrlr0(reg_data, info->regs); /* Set buffers info */ spi_context_buffers_setup(&spi->ctx, tx_bufs, rx_bufs, spi->dfs); spi->fifo_diff = 0U; /* Tx Threshold */ spi_dw_update_txftlr(info, spi); /* Does Rx thresholds needs to be lower? */ reg_data = DW_SPI_RXFTLR_DFLT; if (spi_dw_is_slave(spi)) { if (spi->ctx.rx_len && spi->ctx.rx_len < DW_SPI_RXFTLR_DFLT) { reg_data = spi->ctx.rx_len - 1; } } else { if (spi->ctx.rx_len && spi->ctx.rx_len < DW_SPI_FIFO_DEPTH) { reg_data = spi->ctx.rx_len - 1; } } /* Rx Threshold */ write_rxftlr(reg_data, info->regs); /* Enable interrupts */ reg_data = !rx_bufs ? DW_SPI_IMR_UNMASK & DW_SPI_IMR_MASK_RX : DW_SPI_IMR_UNMASK; write_imr(reg_data, info->regs); spi_context_cs_control(&spi->ctx, true); LOG_DBG("Enabling controller"); set_bit_ssienr(info->regs); ret = spi_context_wait_for_completion(&spi->ctx); out: spi_context_release(&spi->ctx, ret); device_busy_clear(dev); return ret; } static int spi_dw_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { LOG_DBG("%p, %p, %p", dev, tx_bufs, rx_bufs); return transceive(dev, config, tx_bufs, rx_bufs, false, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_dw_transceive_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, struct k_poll_signal *async) { LOG_DBG("%p, %p, %p, %p", dev, tx_bufs, rx_bufs, async); return transceive(dev, config, tx_bufs, rx_bufs, true, async); } #endif /* CONFIG_SPI_ASYNC */ static int spi_dw_release(const struct device *dev, const struct spi_config *config) { struct spi_dw_data *spi = dev->data; if (!spi_context_configured(&spi->ctx, config)) { return -EINVAL; } spi_context_unlock_unconditionally(&spi->ctx); return 0; } void spi_dw_isr(const struct device *dev) { const struct spi_dw_config *info = dev->config; uint32_t int_status; int error; int_status = read_isr(info->regs); LOG_DBG("SPI %p int_status 0x%x - (tx: %d, rx: %d)", dev, int_status, read_txflr(info->regs), read_rxflr(info->regs)); if (int_status & DW_SPI_ISR_ERRORS_MASK) { error = -EIO; goto out; } error = 0; if (int_status & DW_SPI_ISR_RXFIS) { pull_data(dev); } if (int_status & DW_SPI_ISR_TXEIS) { push_data(dev); } out: clear_interrupts(info->regs); completed(dev, error); } static const struct spi_driver_api dw_spi_api = { .transceive = spi_dw_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_dw_transceive_async, #endif /* CONFIG_SPI_ASYNC */ .release = spi_dw_release, }; int spi_dw_init(const struct device *dev) { const struct spi_dw_config *info = dev->config; struct spi_dw_data *spi = dev->data; info->config_func(); /* Masking interrupt and making sure controller is disabled */ write_imr(DW_SPI_IMR_MASK, info->regs); clear_bit_ssienr(info->regs); LOG_DBG("Designware SPI driver initialized on device: %p", dev); spi_context_unlock_unconditionally(&spi->ctx); return 0; } #if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) void spi_config_0_irq(void); struct spi_dw_data spi_dw_data_port_0 = { SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_0, ctx), SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_0, ctx), }; #if DT_NODE_HAS_PROP(DT_INST_PHANDLE(0, clocks), clock_frequency) #define INST_0_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \ DT_INST_PROP_BY_PHANDLE(0, clocks, clock_frequency) #else #define INST_0_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \ DT_INST_PROP(0, clock_frequency) #endif const struct spi_dw_config spi_dw_config_0 = { .regs = DT_INST_REG_ADDR(0), .clock_frequency = INST_0_SNPS_DESIGNWARE_SPI_CLOCK_FREQ, .config_func = spi_config_0_irq, .op_modes = SPI_CTX_RUNTIME_OP_MODE_MASTER }; DEVICE_DT_INST_DEFINE(0, spi_dw_init, NULL, &spi_dw_data_port_0, &spi_dw_config_0, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, &dw_spi_api); void spi_config_0_irq(void) { #if DT_NUM_IRQS(DT_DRV_INST(0)) == 1 #if DT_INST_IRQ_HAS_NAME(0, flags) #define INST_0_IRQ_FLAGS DT_INST_IRQ_BY_NAME(0, flags, irq) #else #define INST_0_IRQ_FLAGS 0 #endif IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), spi_dw_isr, DEVICE_DT_INST_GET(0), INST_0_IRQ_FLAGS); irq_enable(DT_INST_IRQN(0)); #else IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, rx_avail, irq), DT_INST_IRQ_BY_NAME(0, rx_avail_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(0), DT_INST_IRQ_BY_NAME(0, rx_avail, flags)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, tx_req, irq), DT_INST_IRQ_BY_NAME(0, tx_req_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(0), DT_INST_IRQ_BY_NAME(0, tx_req, flags)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, err_int, irq), DT_INST_IRQ_BY_NAME(0, err_int_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(0), DT_INST_IRQ_BY_NAME(0, err_int, flags)); irq_enable(DT_INST_IRQ_BY_NAME(0, rx_avail, irq)); irq_enable(DT_INST_IRQ_BY_NAME(0, tx_req, irq)); irq_enable(DT_INST_IRQ_BY_NAME(0, err_int, irq)); #endif } #endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay) */ #if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay) void spi_config_1_irq(void); struct spi_dw_data spi_dw_data_port_1 = { SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_1, ctx), SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_1, ctx), }; #if DT_NODE_HAS_PROP(DT_INST_PHANDLE(1, clocks), clock_frequency) #define INST_1_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \ DT_INST_PROP_BY_PHANDLE(1, clocks, clock_frequency) #else #define INST_1_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \ DT_INST_PROP(1, clock_frequency) #endif static const struct spi_dw_config spi_dw_config_1 = { .regs = DT_INST_REG_ADDR(1), .clock_frequency = INST_1_SNPS_DESIGNWARE_SPI_CLOCK_FREQ, .config_func = spi_config_1_irq, .op_modes = SPI_CTX_RUNTIME_OP_MODE_MASTER }; DEVICE_DT_INST_DEFINE(1, spi_dw_init, NULL, &spi_dw_data_port_1, &spi_dw_config_1, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, &dw_spi_api); void spi_config_1_irq(void) { #if DT_NUM_IRQS(DT_DRV_INST(1)) == 1 #if DT_INST_IRQ_HAS_NAME(1, flags) #define INST_1_IRQ_FLAGS DT_INST_IRQ_BY_NAME(1, flags, irq) #else #define INST_1_IRQ_FLAGS 0 #endif IRQ_CONNECT(DT_INST_IRQN(1), DT_INST_IRQ(1, priority), spi_dw_isr, DEVICE_DT_INST_GET(1), INST_1_IRQ_FLAGS); irq_enable(DT_INST_IRQN(1)); #else IRQ_CONNECT(DT_INST_IRQ_BY_NAME(1, rx_avail, irq), DT_INST_IRQ_BY_NAME(1, rx_avail_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(1), DT_INST_IRQ_BY_NAME(1, rx_avail, flags)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(1, tx_req, irq), DT_INST_IRQ_BY_NAME(1, tx_req_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(1), DT_INST_IRQ_BY_NAME(1, tx_req, flags)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(1, err_int, irq), DT_INST_IRQ_BY_NAME(1, err_int_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(1), DT_INST_IRQ_BY_NAME(1, err_int, flags)); irq_enable(DT_INST_IRQ_BY_NAME(1, rx_avail, irq)); irq_enable(DT_INST_IRQ_BY_NAME(1, tx_req, irq)); irq_enable(DT_INST_IRQ_BY_NAME(1, err_int, irq)); #endif } #endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay) */ #if DT_NODE_HAS_STATUS(DT_DRV_INST(2), okay) void spi_config_2_irq(void); struct spi_dw_data spi_dw_data_port_2 = { SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_2, ctx), SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_2, ctx), }; #if DT_NODE_HAS_PROP(DT_INST_PHANDLE(2, clocks), clock_frequency) #define INST_2_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \ DT_INST_PROP_BY_PHANDLE(2, clocks, clock_frequency) #else #define INST_2_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \ DT_INST_PROP(2, clock_frequency) #endif static const struct spi_dw_config spi_dw_config_2 = { .regs = DT_INST_REG_ADDR(2), .clock_frequency = INST_2_SNPS_DESIGNWARE_SPI_CLOCK_FREQ, .config_func = spi_config_2_irq, .op_modes = SPI_CTX_RUNTIME_OP_MODE_MASTER }; DEVICE_DT_INST_DEFINE(2, spi_dw_init, NULL, &spi_dw_data_port_2, &spi_dw_config_2, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, &dw_spi_api); void spi_config_2_irq(void) { #if DT_NUM_IRQS(DT_DRV_INST(2)) == 1 #if DT_INST_IRQ_HAS_NAME(2, flags) #define INST_2_IRQ_FLAGS DT_INST_IRQ_BY_NAME(2, flags, irq) #else #define INST_2_IRQ_FLAGS 0 #endif IRQ_CONNECT(DT_INST_IRQN(2), DT_INST_IRQ(2, priority), spi_dw_isr, DEVICE_DT_INST_GET(2), INST_2_IRQ_FLAGS); irq_enable(DT_INST_IRQN(2)); #else IRQ_CONNECT(DT_INST_IRQ_BY_NAME(2, rx_avail, irq), DT_INST_IRQ_BY_NAME(2, rx_avail_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(2), DT_INST_IRQ_BY_NAME(2, rx_avail, flags)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(2, tx_req, irq), DT_INST_IRQ_BY_NAME(2, tx_req_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(2), DT_INST_IRQ_BY_NAME(2, tx_req, flags)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(2, err_int, irq), DT_INST_IRQ_BY_NAME(2, err_int_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(2), DT_INST_IRQ_BY_NAME(2, err_int, flags)); irq_enable(DT_INST_IRQ_BY_NAME(2, rx_avail, irq)); irq_enable(DT_INST_IRQ_BY_NAME(2, tx_req, irq)); irq_enable(DT_INST_IRQ_BY_NAME(2, err_int, irq)); #endif } #endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(2), okay) */ #if DT_NODE_HAS_STATUS(DT_DRV_INST(3), okay) void spi_config_3_irq(void); struct spi_dw_data spi_dw_data_port_3 = { SPI_CONTEXT_INIT_LOCK(spi_dw_data_port_3, ctx), SPI_CONTEXT_INIT_SYNC(spi_dw_data_port_3, ctx), }; #if DT_NODE_HAS_PROP(DT_INST_PHANDLE(3, clocks), clock_frequency) #define INST_3_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \ DT_INST_PROP_BY_PHANDLE(3, clocks, clock_frequency) #else #define INST_3_SNPS_DESIGNWARE_SPI_CLOCK_FREQ \ DT_INST_PROP(3, clock_frequency) #endif static const struct spi_dw_config spi_dw_config_3 = { .regs = DT_INST_REG_ADDR(3), .clock_frequency = INST_3_SNPS_DESIGNWARE_SPI_CLOCK_FREQ, .config_func = spi_config_3_irq, .op_modes = SPI_CTX_RUNTIME_OP_MODE_MASTER }; DEVICE_DT_INST_DEFINE(3, spi_dw_init, NULL, &spi_dw_data_port_3, &spi_dw_config_3, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, &dw_spi_api); void spi_config_3_irq(void) { #if DT_NUM_IRQS(DT_DRV_INST(3)) == 1 #if DT_INST_IRQ_HAS_NAME(3, flags) #define INST_3_IRQ_FLAGS DT_INST_IRQ_BY_NAME(3, flags, irq) #else #define INST_3_IRQ_FLAGS 0 #endif IRQ_CONNECT(DT_INST_IRQN(3), DT_INST_IRQ(3, priority), spi_dw_isr, DEVICE_DT_INST_GET(3), INST_3_IRQ_FLAGS); irq_enable(DT_INST_IRQN(3)); #else IRQ_CONNECT(DT_INST_IRQ_BY_NAME(3, rx_avail, irq), DT_INST_IRQ_BY_NAME(3, rx_avail_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(3), DT_INST_IRQ_BY_NAME(3, rx_avail, flags)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(3, tx_req, irq), DT_INST_IRQ_BY_NAME(3, tx_req_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(3), DT_INST_IRQ_BY_NAME(3, tx_req, flags)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(3, err_int, irq), DT_INST_IRQ_BY_NAME(3, err_int_pri, irq), spi_dw_isr, DEVICE_DT_INST_GET(3), DT_INST_IRQ_BY_NAME(3, err_int, flags)); irq_enable(DT_INST_IRQ_BY_NAME(3, rx_avail, irq)); irq_enable(DT_INST_IRQ_BY_NAME(3, tx_req, irq)); irq_enable(DT_INST_IRQ_BY_NAME(3, err_int, irq)); #endif } #endif /* DT_NODE_HAS_STATUS(DT_DRV_INST(3), okay) */