/* * Copyright (c) 2020 Espressif Systems (Shanghai) Co., Ltd. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT espressif_esp32_spi /* Include esp-idf headers first to avoid redefining BIT() macro */ #include #include #include #include LOG_MODULE_REGISTER(esp32_spi, CONFIG_SPI_LOG_LEVEL); #include #include #include #ifndef CONFIG_SOC_SERIES_ESP32C3 #include #else #include #endif #ifdef SOC_GDMA_SUPPORTED #include #include #endif #include #include "spi_context.h" #include "spi_esp32_spim.h" #ifdef CONFIG_SOC_SERIES_ESP32C3 #define ISR_HANDLER isr_handler_t #else #define ISR_HANDLER intr_handler_t #endif #define SPI_DMA_MAX_BUFFER_SIZE 4092 static bool spi_esp32_transfer_ongoing(struct spi_esp32_data *data) { return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); } static inline void spi_esp32_complete(const struct device *dev, struct spi_esp32_data *data, spi_dev_t *spi, int status) { #ifdef CONFIG_SPI_ESP32_INTERRUPT spi_ll_disable_int(spi); spi_ll_clear_int_stat(spi); #endif spi_context_cs_control(&data->ctx, false); #ifdef CONFIG_SPI_ESP32_INTERRUPT spi_context_complete(&data->ctx, dev, status); #endif } static int IRAM_ATTR spi_esp32_transfer(const struct device *dev) { struct spi_esp32_data *data = dev->data; const struct spi_esp32_config *cfg = dev->config; struct spi_context *ctx = &data->ctx; spi_hal_context_t *hal = &data->hal; spi_hal_dev_config_t *hal_dev = &data->dev_config; spi_hal_trans_config_t *hal_trans = &data->trans_config; size_t chunk_len_bytes = spi_context_max_continuous_chunk(&data->ctx) * data->dfs; size_t max_buf_sz = cfg->dma_enabled ? SPI_DMA_MAX_BUFFER_SIZE : SOC_SPI_MAXIMUM_BUFFER_SIZE; size_t transfer_len_bytes = MIN(chunk_len_bytes, max_buf_sz); size_t transfer_len_frames = transfer_len_bytes / data->dfs; size_t bit_len = transfer_len_bytes << 3; uint8_t *rx_temp = NULL; uint8_t *tx_temp = NULL; uint8_t dma_len_tx = MIN(ctx->tx_len * data->dfs, SPI_DMA_MAX_BUFFER_SIZE); uint8_t dma_len_rx = MIN(ctx->rx_len * data->dfs, SPI_DMA_MAX_BUFFER_SIZE); if (cfg->dma_enabled) { /* bit_len needs to be at least one byte long when using DMA */ bit_len = !bit_len ? 8 : bit_len; if (ctx->tx_buf && !esp_ptr_dma_capable((uint32_t *)&ctx->tx_buf[0])) { LOG_DBG("Tx buffer not DMA capable"); tx_temp = k_malloc(dma_len_tx); if (!tx_temp) { LOG_ERR("Error allocating temp buffer Tx"); return -ENOMEM; } memcpy(tx_temp, &ctx->tx_buf[0], dma_len_tx); } if (ctx->rx_buf && (!esp_ptr_dma_capable((uint32_t *)&ctx->rx_buf[0]) || ((int)&ctx->rx_buf[0] % 4 != 0) || (dma_len_rx % 4 != 0))) { /* The rx buffer need to be length of * multiples of 32 bits to avoid heap * corruption. */ LOG_DBG("Rx buffer not DMA capable"); rx_temp = k_calloc(((dma_len_rx << 3) + 31) / 8, sizeof(uint8_t)); if (!rx_temp) { LOG_ERR("Error allocating temp buffer Rx"); k_free(tx_temp); return -ENOMEM; } } } /* clean up and prepare SPI hal */ memset((uint32_t *)hal->hw->data_buf, 0, sizeof(hal->hw->data_buf)); hal_trans->send_buffer = tx_temp ? tx_temp : (uint8_t *)ctx->tx_buf; hal_trans->rcv_buffer = rx_temp ? rx_temp : ctx->rx_buf; hal_trans->tx_bitlen = bit_len; hal_trans->rx_bitlen = bit_len; /* keep cs line active until last transmission */ hal_trans->cs_keep_active = (!ctx->num_cs_gpios && (ctx->rx_count > 1 || ctx->tx_count > 1 || ctx->rx_len > transfer_len_frames || ctx->tx_len > transfer_len_frames)); /* configure SPI */ spi_hal_setup_trans(hal, hal_dev, hal_trans); spi_hal_prepare_data(hal, hal_dev, hal_trans); /* send data */ spi_hal_user_start(hal); spi_context_update_tx(&data->ctx, data->dfs, transfer_len_frames); while (!spi_hal_usr_is_done(hal)) { /* nop */ } /* read data */ spi_hal_fetch_result(hal); if (rx_temp) { memcpy(&ctx->rx_buf[0], rx_temp, transfer_len_bytes); } spi_context_update_rx(&data->ctx, data->dfs, transfer_len_frames); k_free(tx_temp); k_free(rx_temp); return 0; } #ifdef CONFIG_SPI_ESP32_INTERRUPT static void IRAM_ATTR spi_esp32_isr(void *arg) { const struct device *dev = (const struct device *)arg; const struct spi_esp32_config *cfg = dev->config; struct spi_esp32_data *data = dev->data; do { spi_esp32_transfer(dev); } while (spi_esp32_transfer_ongoing(data)); spi_esp32_complete(dev, data, cfg->spi, 0); } #endif static int spi_esp32_init_dma(const struct device *dev) { const struct spi_esp32_config *cfg = dev->config; struct spi_esp32_data *data = dev->data; uint8_t channel_offset; if (clock_control_on(cfg->clock_dev, (clock_control_subsys_t)cfg->dma_clk_src)) { LOG_ERR("Could not enable DMA clock"); return -EIO; } #ifdef SOC_GDMA_SUPPORTED gdma_hal_init(&data->hal_gdma, 0); gdma_ll_enable_clock(data->hal_gdma.dev, true); gdma_ll_tx_reset_channel(data->hal_gdma.dev, cfg->dma_host); gdma_ll_rx_reset_channel(data->hal_gdma.dev, cfg->dma_host); gdma_ll_tx_connect_to_periph(data->hal_gdma.dev, cfg->dma_host, GDMA_TRIG_PERIPH_SPI, cfg->dma_host); gdma_ll_rx_connect_to_periph(data->hal_gdma.dev, cfg->dma_host, GDMA_TRIG_PERIPH_SPI, cfg->dma_host); channel_offset = 0; #else channel_offset = 1; #endif /* SOC_GDMA_SUPPORTED */ #ifdef CONFIG_SOC_SERIES_ESP32 /*Connect SPI and DMA*/ DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, cfg->dma_host + 1, ((cfg->dma_host + 1) * 2)); #endif /* CONFIG_SOC_SERIES_ESP32 */ data->hal_config.dma_in = (spi_dma_dev_t *)cfg->spi; data->hal_config.dma_out = (spi_dma_dev_t *)cfg->spi; data->hal_config.dma_enabled = true; data->hal_config.tx_dma_chan = cfg->dma_host + channel_offset; data->hal_config.rx_dma_chan = cfg->dma_host + channel_offset; data->hal_config.dmadesc_n = 1; data->hal_config.dmadesc_rx = &data->dma_desc_rx; data->hal_config.dmadesc_tx = &data->dma_desc_tx; if (data->hal_config.dmadesc_tx == NULL || data->hal_config.dmadesc_rx == NULL) { k_free(data->hal_config.dmadesc_tx); k_free(data->hal_config.dmadesc_rx); return -ENOMEM; } spi_hal_init(&data->hal, cfg->dma_host + 1, &data->hal_config); return 0; } static int spi_esp32_init(const struct device *dev) { int err; const struct spi_esp32_config *cfg = dev->config; struct spi_esp32_data *data = dev->data; if (!cfg->clock_dev) { return -EINVAL; } if (cfg->dma_enabled) { spi_esp32_init_dma(dev); } #ifdef CONFIG_SPI_ESP32_INTERRUPT data->irq_line = esp_intr_alloc(cfg->irq_source, 0, (ISR_HANDLER)spi_esp32_isr, (void *)dev, NULL); #endif err = spi_context_cs_configure_all(&data->ctx); if (err < 0) { return err; } err = esp_clk_tree_src_get_freq_hz( cfg->clock_source, ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX, &data->clock_source_hz); if (err) { LOG_ERR("Could not get clock source frequency (%d)", err); return err; } spi_context_unlock_unconditionally(&data->ctx); return 0; } static inline uint8_t spi_esp32_get_line_mode(uint16_t operation) { if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES)) { switch (operation & SPI_LINES_MASK) { case SPI_LINES_SINGLE: return 1; case SPI_LINES_DUAL: return 2; case SPI_LINES_OCTAL: return 8; case SPI_LINES_QUAD: return 4; default: break; } } return 1; } static int IRAM_ATTR spi_esp32_configure(const struct device *dev, const struct spi_config *spi_cfg) { const struct spi_esp32_config *cfg = dev->config; struct spi_esp32_data *data = dev->data; struct spi_context *ctx = &data->ctx; spi_hal_context_t *hal = &data->hal; spi_hal_dev_config_t *hal_dev = &data->dev_config; spi_dev_t *hw = hal->hw; int freq; if (spi_context_configured(ctx, spi_cfg)) { return 0; } if (!device_is_ready(cfg->clock_dev)) { LOG_ERR("clock control device not ready"); return -ENODEV; } /* enables SPI peripheral */ if (clock_control_on(cfg->clock_dev, cfg->clock_subsys)) { LOG_ERR("Could not enable SPI clock"); return -EIO; } spi_ll_master_init(hal->hw); ctx->config = spi_cfg; if (spi_cfg->operation & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } if (spi_cfg->operation & SPI_OP_MODE_SLAVE) { LOG_ERR("Slave mode not supported"); return -ENOTSUP; } if (spi_cfg->operation & SPI_MODE_LOOP) { LOG_ERR("Loopback mode is not supported"); return -ENOTSUP; } hal_dev->cs_pin_id = ctx->config->slave; int ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); /* input parameters to calculate timing configuration */ spi_hal_timing_param_t timing_param = { .half_duplex = hal_dev->half_duplex, .no_compensate = hal_dev->no_compensate, .expected_freq = spi_cfg->frequency, .duty_cycle = cfg->duty_cycle == 0 ? 128 : cfg->duty_cycle, .input_delay_ns = cfg->input_delay_ns, .use_gpio = !cfg->use_iomux, .clk_src_hz = data->clock_source_hz, }; spi_hal_cal_clock_conf(&timing_param, &freq, &hal_dev->timing_conf); data->trans_config.dummy_bits = hal_dev->timing_conf.timing_dummy; hal_dev->tx_lsbfirst = spi_cfg->operation & SPI_TRANSFER_LSB ? 1 : 0; hal_dev->rx_lsbfirst = spi_cfg->operation & SPI_TRANSFER_LSB ? 1 : 0; data->trans_config.line_mode.data_lines = spi_esp32_get_line_mode(spi_cfg->operation); /* multiline for command and address not supported */ data->trans_config.line_mode.addr_lines = 1; data->trans_config.line_mode.cmd_lines = 1; /* SPI mode */ hal_dev->mode = 0; if (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA) { hal_dev->mode = BIT(0); } if (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL) { hal_dev->mode |= BIT(1); } /* Chip select setup and hold times */ /* GPIO CS have their own delay parameter*/ if (!spi_cs_is_gpio(spi_cfg)) { hal_dev->cs_hold = cfg->cs_hold; hal_dev->cs_setup = cfg->cs_setup; } spi_hal_setup_device(hal, hal_dev); /* Workaround to handle default state of MISO and MOSI lines */ #ifndef CONFIG_SOC_SERIES_ESP32 if (cfg->line_idle_low) { hw->ctrl.d_pol = 0; hw->ctrl.q_pol = 0; } else { hw->ctrl.d_pol = 1; hw->ctrl.q_pol = 1; } #endif /* * Workaround for ESP32S3 and ESP32C3 SoC. This dummy transaction is needed to sync CLK and * software controlled CS when SPI is in mode 3 */ #if defined(CONFIG_SOC_SERIES_ESP32S3) || defined(CONFIG_SOC_SERIES_ESP32C3) if (ctx->num_cs_gpios && (hal_dev->mode & (SPI_MODE_CPOL | SPI_MODE_CPHA))) { spi_esp32_transfer(dev); } #endif return 0; } static inline uint8_t spi_esp32_get_frame_size(const struct spi_config *spi_cfg) { uint8_t dfs = SPI_WORD_SIZE_GET(spi_cfg->operation); dfs /= 8; if ((dfs == 0) || (dfs > 4)) { LOG_WRN("Unsupported dfs, 1-byte size will be used"); dfs = 1; } return dfs; } static int transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *userdata) { const struct spi_esp32_config *cfg = dev->config; struct spi_esp32_data *data = dev->data; int ret; if (!tx_bufs && !rx_bufs) { return 0; } #ifndef CONFIG_SPI_ESP32_INTERRUPT if (asynchronous) { return -ENOTSUP; } #endif spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg); ret = spi_esp32_configure(dev, spi_cfg); if (ret) { goto done; } data->dfs = spi_esp32_get_frame_size(spi_cfg); spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, data->dfs); spi_context_cs_control(&data->ctx, true); #ifdef CONFIG_SPI_ESP32_INTERRUPT spi_ll_enable_int(cfg->spi); spi_ll_set_int_stat(cfg->spi); #else do { spi_esp32_transfer(dev); } while (spi_esp32_transfer_ongoing(data)); spi_esp32_complete(dev, data, cfg->spi, 0); #endif /* CONFIG_SPI_ESP32_INTERRUPT */ done: spi_context_release(&data->ctx, ret); return ret; } static int spi_esp32_transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_esp32_transceive_async(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata); } #endif /* CONFIG_SPI_ASYNC */ static int spi_esp32_release(const struct device *dev, const struct spi_config *config) { struct spi_esp32_data *data = dev->data; spi_context_unlock_unconditionally(&data->ctx); return 0; } static const struct spi_driver_api spi_api = { .transceive = spi_esp32_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_esp32_transceive_async, #endif .release = spi_esp32_release }; #ifdef CONFIG_SOC_SERIES_ESP32 #define GET_AS_CS(idx) .as_cs = DT_INST_PROP(idx, clk_as_cs), #else #define GET_AS_CS(idx) #endif #define ESP32_SPI_INIT(idx) \ \ PINCTRL_DT_INST_DEFINE(idx); \ \ static struct spi_esp32_data spi_data_##idx = { \ SPI_CONTEXT_INIT_LOCK(spi_data_##idx, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_data_##idx, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(idx), ctx) \ .hal = { \ .hw = (spi_dev_t *)DT_INST_REG_ADDR(idx), \ }, \ .dev_config = { \ .half_duplex = DT_INST_PROP(idx, half_duplex), \ GET_AS_CS(idx) \ .positive_cs = DT_INST_PROP(idx, positive_cs), \ .no_compensate = DT_INST_PROP(idx, dummy_comp), \ .sio = DT_INST_PROP(idx, sio) \ } \ }; \ \ static const struct spi_esp32_config spi_config_##idx = { \ .spi = (spi_dev_t *)DT_INST_REG_ADDR(idx), \ \ .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \ .duty_cycle = 0, \ .input_delay_ns = 0, \ .irq_source = DT_INST_IRQN(idx), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \ .clock_subsys = \ (clock_control_subsys_t)DT_INST_CLOCKS_CELL(idx, offset), \ .use_iomux = DT_INST_PROP(idx, use_iomux), \ .dma_enabled = DT_INST_PROP(idx, dma_enabled), \ .dma_clk_src = DT_INST_PROP(idx, dma_clk), \ .dma_host = DT_INST_PROP(idx, dma_host), \ .cs_setup = DT_INST_PROP_OR(idx, cs_setup_time, 0), \ .cs_hold = DT_INST_PROP_OR(idx, cs_hold_time, 0), \ .line_idle_low = DT_INST_PROP(idx, line_idle_low), \ .clock_source = SPI_CLK_SRC_DEFAULT, \ }; \ \ DEVICE_DT_INST_DEFINE(idx, &spi_esp32_init, \ NULL, &spi_data_##idx, \ &spi_config_##idx, POST_KERNEL, \ CONFIG_SPI_INIT_PRIORITY, &spi_api); DT_INST_FOREACH_STATUS_OKAY(ESP32_SPI_INIT)