/* * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); struct k_spinlock _sched_spinlock; static void update_cache(int preempt_ok); static void halt_thread(struct k_thread *thread, uint8_t new_state); static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q); static inline int is_preempt(struct k_thread *thread) { /* explanation in kernel_struct.h */ return thread->base.preempt <= _PREEMPT_THRESHOLD; } BUILD_ASSERT(CONFIG_NUM_COOP_PRIORITIES >= CONFIG_NUM_METAIRQ_PRIORITIES, "You need to provide at least as many CONFIG_NUM_COOP_PRIORITIES as " "CONFIG_NUM_METAIRQ_PRIORITIES as Meta IRQs are just a special class of cooperative " "threads."); static inline int is_metairq(struct k_thread *thread) { #if CONFIG_NUM_METAIRQ_PRIORITIES > 0 return (thread->base.prio - K_HIGHEST_THREAD_PRIO) < CONFIG_NUM_METAIRQ_PRIORITIES; #else ARG_UNUSED(thread); return 0; #endif } #if CONFIG_ASSERT static inline bool is_thread_dummy(struct k_thread *thread) { return (thread->base.thread_state & _THREAD_DUMMY) != 0U; } #endif /* * Return value same as e.g. memcmp * > 0 -> thread 1 priority > thread 2 priority * = 0 -> thread 1 priority == thread 2 priority * < 0 -> thread 1 priority < thread 2 priority * Do not rely on the actual value returned aside from the above. * (Again, like memcmp.) */ int32_t z_sched_prio_cmp(struct k_thread *thread_1, struct k_thread *thread_2) { /* `prio` is <32b, so the below cannot overflow. */ int32_t b1 = thread_1->base.prio; int32_t b2 = thread_2->base.prio; if (b1 != b2) { return b2 - b1; } #ifdef CONFIG_SCHED_DEADLINE /* If we assume all deadlines live within the same "half" of * the 32 bit modulus space (this is a documented API rule), * then the latest deadline in the queue minus the earliest is * guaranteed to be (2's complement) non-negative. We can * leverage that to compare the values without having to check * the current time. */ uint32_t d1 = thread_1->base.prio_deadline; uint32_t d2 = thread_2->base.prio_deadline; if (d1 != d2) { /* Sooner deadline means higher effective priority. * Doing the calculation with unsigned types and casting * to signed isn't perfect, but at least reduces this * from UB on overflow to impdef. */ return (int32_t) (d2 - d1); } #endif return 0; } static ALWAYS_INLINE bool should_preempt(struct k_thread *thread, int preempt_ok) { /* Preemption is OK if it's being explicitly allowed by * software state (e.g. the thread called k_yield()) */ if (preempt_ok != 0) { return true; } __ASSERT(_current != NULL, ""); /* Or if we're pended/suspended/dummy (duh) */ if (z_is_thread_prevented_from_running(_current)) { return true; } /* Edge case on ARM where a thread can be pended out of an * interrupt handler before the "synchronous" swap starts * context switching. Platforms with atomic swap can never * hit this. */ if (IS_ENABLED(CONFIG_SWAP_NONATOMIC) && z_is_thread_timeout_active(thread)) { return true; } /* Otherwise we have to be running a preemptible thread or * switching to a metairq */ if (is_preempt(_current) || is_metairq(thread)) { return true; } return false; } #ifdef CONFIG_SCHED_CPU_MASK static ALWAYS_INLINE struct k_thread *_priq_dumb_mask_best(sys_dlist_t *pq) { /* With masks enabled we need to be prepared to walk the list * looking for one we can run */ struct k_thread *thread; SYS_DLIST_FOR_EACH_CONTAINER(pq, thread, base.qnode_dlist) { if ((thread->base.cpu_mask & BIT(_current_cpu->id)) != 0) { return thread; } } return NULL; } #endif #if defined(CONFIG_SCHED_DUMB) || defined(CONFIG_WAITQ_DUMB) static ALWAYS_INLINE void z_priq_dumb_add(sys_dlist_t *pq, struct k_thread *thread) { struct k_thread *t; __ASSERT_NO_MSG(!z_is_idle_thread_object(thread)); SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) { if (z_sched_prio_cmp(thread, t) > 0) { sys_dlist_insert(&t->base.qnode_dlist, &thread->base.qnode_dlist); return; } } sys_dlist_append(pq, &thread->base.qnode_dlist); } #endif static ALWAYS_INLINE void *thread_runq(struct k_thread *thread) { #ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY int cpu, m = thread->base.cpu_mask; /* Edge case: it's legal per the API to "make runnable" a * thread with all CPUs masked off (i.e. one that isn't * actually runnable!). Sort of a wart in the API and maybe * we should address this in docs/assertions instead to avoid * the extra test. */ cpu = m == 0 ? 0 : u32_count_trailing_zeros(m); return &_kernel.cpus[cpu].ready_q.runq; #else ARG_UNUSED(thread); return &_kernel.ready_q.runq; #endif } static ALWAYS_INLINE void *curr_cpu_runq(void) { #ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY return &arch_curr_cpu()->ready_q.runq; #else return &_kernel.ready_q.runq; #endif } static ALWAYS_INLINE void runq_add(struct k_thread *thread) { _priq_run_add(thread_runq(thread), thread); } static ALWAYS_INLINE void runq_remove(struct k_thread *thread) { _priq_run_remove(thread_runq(thread), thread); } static ALWAYS_INLINE struct k_thread *runq_best(void) { return _priq_run_best(curr_cpu_runq()); } /* _current is never in the run queue until context switch on * SMP configurations, see z_requeue_current() */ static inline bool should_queue_thread(struct k_thread *thread) { return !IS_ENABLED(CONFIG_SMP) || thread != _current; } static ALWAYS_INLINE void queue_thread(struct k_thread *thread) { thread->base.thread_state |= _THREAD_QUEUED; if (should_queue_thread(thread)) { runq_add(thread); } #ifdef CONFIG_SMP if (thread == _current) { /* add current to end of queue means "yield" */ _current_cpu->swap_ok = true; } #endif } static ALWAYS_INLINE void dequeue_thread(struct k_thread *thread) { thread->base.thread_state &= ~_THREAD_QUEUED; if (should_queue_thread(thread)) { runq_remove(thread); } } static void signal_pending_ipi(void) { /* Synchronization note: you might think we need to lock these * two steps, but an IPI is idempotent. It's OK if we do it * twice. All we require is that if a CPU sees the flag true, * it is guaranteed to send the IPI, and if a core sets * pending_ipi, the IPI will be sent the next time through * this code. */ #if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED) if (arch_num_cpus() > 1) { if (_kernel.pending_ipi) { _kernel.pending_ipi = false; arch_sched_ipi(); } } #endif } #ifdef CONFIG_SMP /* Called out of z_swap() when CONFIG_SMP. The current thread can * never live in the run queue until we are inexorably on the context * switch path on SMP, otherwise there is a deadlock condition where a * set of CPUs pick a cycle of threads to run and wait for them all to * context switch forever. */ void z_requeue_current(struct k_thread *thread) { if (z_is_thread_queued(thread)) { runq_add(thread); } signal_pending_ipi(); } /* Return true if the thread is aborting, else false */ static inline bool is_aborting(struct k_thread *thread) { return (thread->base.thread_state & _THREAD_ABORTING) != 0U; } /* Return true if the thread is aborting or suspending, else false */ static inline bool is_halting(struct k_thread *thread) { return (thread->base.thread_state & (_THREAD_ABORTING | _THREAD_SUSPENDING)) != 0U; } #endif /* Clear the halting bits (_THREAD_ABORTING and _THREAD_SUSPENDING) */ static inline void clear_halting(struct k_thread *thread) { thread->base.thread_state &= ~(_THREAD_ABORTING | _THREAD_SUSPENDING); } static ALWAYS_INLINE struct k_thread *next_up(void) { #ifdef CONFIG_SMP if (is_halting(_current)) { halt_thread(_current, is_aborting(_current) ? _THREAD_DEAD : _THREAD_SUSPENDED); } #endif struct k_thread *thread = runq_best(); #if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && \ (CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES) /* MetaIRQs must always attempt to return back to a * cooperative thread they preempted and not whatever happens * to be highest priority now. The cooperative thread was * promised it wouldn't be preempted (by non-metairq threads)! */ struct k_thread *mirqp = _current_cpu->metairq_preempted; if (mirqp != NULL && (thread == NULL || !is_metairq(thread))) { if (!z_is_thread_prevented_from_running(mirqp)) { thread = mirqp; } else { _current_cpu->metairq_preempted = NULL; } } #endif #ifndef CONFIG_SMP /* In uniprocessor mode, we can leave the current thread in * the queue (actually we have to, otherwise the assembly * context switch code for all architectures would be * responsible for putting it back in z_swap and ISR return!), * which makes this choice simple. */ return (thread != NULL) ? thread : _current_cpu->idle_thread; #else /* Under SMP, the "cache" mechanism for selecting the next * thread doesn't work, so we have more work to do to test * _current against the best choice from the queue. Here, the * thread selected above represents "the best thread that is * not current". * * Subtle note on "queued": in SMP mode, _current does not * live in the queue, so this isn't exactly the same thing as * "ready", it means "is _current already added back to the * queue such that we don't want to re-add it". */ bool queued = z_is_thread_queued(_current); bool active = !z_is_thread_prevented_from_running(_current); if (thread == NULL) { thread = _current_cpu->idle_thread; } if (active) { int32_t cmp = z_sched_prio_cmp(_current, thread); /* Ties only switch if state says we yielded */ if ((cmp > 0) || ((cmp == 0) && !_current_cpu->swap_ok)) { thread = _current; } if (!should_preempt(thread, _current_cpu->swap_ok)) { thread = _current; } } /* Put _current back into the queue */ if (thread != _current && active && !z_is_idle_thread_object(_current) && !queued) { queue_thread(_current); } /* Take the new _current out of the queue */ if (z_is_thread_queued(thread)) { dequeue_thread(thread); } _current_cpu->swap_ok = false; return thread; #endif } static void move_thread_to_end_of_prio_q(struct k_thread *thread) { if (z_is_thread_queued(thread)) { dequeue_thread(thread); } queue_thread(thread); update_cache(thread == _current); } static void flag_ipi(void) { #if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED) if (arch_num_cpus() > 1) { _kernel.pending_ipi = true; } #endif } #ifdef CONFIG_TIMESLICING static int slice_ticks = DIV_ROUND_UP(CONFIG_TIMESLICE_SIZE * Z_HZ_ticks, Z_HZ_ms); static int slice_max_prio = CONFIG_TIMESLICE_PRIORITY; static struct _timeout slice_timeouts[CONFIG_MP_MAX_NUM_CPUS]; static bool slice_expired[CONFIG_MP_MAX_NUM_CPUS]; #ifdef CONFIG_SWAP_NONATOMIC /* If z_swap() isn't atomic, then it's possible for a timer interrupt * to try to timeslice away _current after it has already pended * itself but before the corresponding context switch. Treat that as * a noop condition in z_time_slice(). */ static struct k_thread *pending_current; #endif static inline int slice_time(struct k_thread *thread) { int ret = slice_ticks; #ifdef CONFIG_TIMESLICE_PER_THREAD if (thread->base.slice_ticks != 0) { ret = thread->base.slice_ticks; } #else ARG_UNUSED(thread); #endif return ret; } static inline bool sliceable(struct k_thread *thread) { bool ret = is_preempt(thread) && slice_time(thread) != 0 && !z_is_prio_higher(thread->base.prio, slice_max_prio) && !z_is_thread_prevented_from_running(thread) && !z_is_idle_thread_object(thread); #ifdef CONFIG_TIMESLICE_PER_THREAD ret |= thread->base.slice_ticks != 0; #endif return ret; } static void slice_timeout(struct _timeout *timeout) { int cpu = ARRAY_INDEX(slice_timeouts, timeout); slice_expired[cpu] = true; /* We need an IPI if we just handled a timeslice expiration * for a different CPU. Ideally this would be able to target * the specific core, but that's not part of the API yet. */ if (IS_ENABLED(CONFIG_SMP) && cpu != _current_cpu->id) { flag_ipi(); } } void z_reset_time_slice(struct k_thread *thread) { int cpu = _current_cpu->id; z_abort_timeout(&slice_timeouts[cpu]); slice_expired[cpu] = false; if (sliceable(thread)) { z_add_timeout(&slice_timeouts[cpu], slice_timeout, K_TICKS(slice_time(thread) - 1)); } } void k_sched_time_slice_set(int32_t slice, int prio) { K_SPINLOCK(&_sched_spinlock) { slice_ticks = k_ms_to_ticks_ceil32(slice); slice_max_prio = prio; z_reset_time_slice(_current); } } #ifdef CONFIG_TIMESLICE_PER_THREAD void k_thread_time_slice_set(struct k_thread *thread, int32_t thread_slice_ticks, k_thread_timeslice_fn_t expired, void *data) { K_SPINLOCK(&_sched_spinlock) { thread->base.slice_ticks = thread_slice_ticks; thread->base.slice_expired = expired; thread->base.slice_data = data; } } #endif /* Called out of each timer interrupt */ void z_time_slice(void) { k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); struct k_thread *curr = _current; #ifdef CONFIG_SWAP_NONATOMIC if (pending_current == curr) { z_reset_time_slice(curr); k_spin_unlock(&_sched_spinlock, key); return; } pending_current = NULL; #endif if (slice_expired[_current_cpu->id] && sliceable(curr)) { #ifdef CONFIG_TIMESLICE_PER_THREAD if (curr->base.slice_expired) { k_spin_unlock(&_sched_spinlock, key); curr->base.slice_expired(curr, curr->base.slice_data); key = k_spin_lock(&_sched_spinlock); } #endif if (!z_is_thread_prevented_from_running(curr)) { move_thread_to_end_of_prio_q(curr); } z_reset_time_slice(curr); } k_spin_unlock(&_sched_spinlock, key); } #endif /* Track cooperative threads preempted by metairqs so we can return to * them specifically. Called at the moment a new thread has been * selected to run. */ static void update_metairq_preempt(struct k_thread *thread) { #if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && \ (CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES) if (is_metairq(thread) && !is_metairq(_current) && !is_preempt(_current)) { /* Record new preemption */ _current_cpu->metairq_preempted = _current; } else if (!is_metairq(thread) && !z_is_idle_thread_object(thread)) { /* Returning from existing preemption */ _current_cpu->metairq_preempted = NULL; } #else ARG_UNUSED(thread); #endif } static void update_cache(int preempt_ok) { #ifndef CONFIG_SMP struct k_thread *thread = next_up(); if (should_preempt(thread, preempt_ok)) { #ifdef CONFIG_TIMESLICING if (thread != _current) { z_reset_time_slice(thread); } #endif update_metairq_preempt(thread); _kernel.ready_q.cache = thread; } else { _kernel.ready_q.cache = _current; } #else /* The way this works is that the CPU record keeps its * "cooperative swapping is OK" flag until the next reschedule * call or context switch. It doesn't need to be tracked per * thread because if the thread gets preempted for whatever * reason the scheduler will make the same decision anyway. */ _current_cpu->swap_ok = preempt_ok; #endif } static bool thread_active_elsewhere(struct k_thread *thread) { /* True if the thread is currently running on another CPU. * There are more scalable designs to answer this question in * constant time, but this is fine for now. */ #ifdef CONFIG_SMP int currcpu = _current_cpu->id; unsigned int num_cpus = arch_num_cpus(); for (int i = 0; i < num_cpus; i++) { if ((i != currcpu) && (_kernel.cpus[i].current == thread)) { return true; } } #endif ARG_UNUSED(thread); return false; } static void ready_thread(struct k_thread *thread) { #ifdef CONFIG_KERNEL_COHERENCE __ASSERT_NO_MSG(arch_mem_coherent(thread)); #endif /* If thread is queued already, do not try and added it to the * run queue again */ if (!z_is_thread_queued(thread) && z_is_thread_ready(thread)) { SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_ready, thread); queue_thread(thread); update_cache(0); flag_ipi(); } } void z_ready_thread(struct k_thread *thread) { K_SPINLOCK(&_sched_spinlock) { if (!thread_active_elsewhere(thread)) { ready_thread(thread); } } } void z_move_thread_to_end_of_prio_q(struct k_thread *thread) { K_SPINLOCK(&_sched_spinlock) { move_thread_to_end_of_prio_q(thread); } } void z_sched_start(struct k_thread *thread) { k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); if (z_has_thread_started(thread)) { k_spin_unlock(&_sched_spinlock, key); return; } z_mark_thread_as_started(thread); ready_thread(thread); z_reschedule(&_sched_spinlock, key); } /** * @brief Halt a thread * * If the target thread is running on another CPU, flag it as needing to * abort and send an IPI (if supported) to force a schedule point and wait * until the target thread is switched out (ISRs will spin to wait and threads * will block to wait). If the target thread is not running on another CPU, * then it is safe to act immediately. * * Upon entry to this routine, the scheduler lock is already held. It is * released before this routine returns. * * @param thread Thread to suspend or abort * @param key Current key for _sched_spinlock * @param terminate True if aborting thread, false if suspending thread */ static void z_thread_halt(struct k_thread *thread, k_spinlock_key_t key, bool terminate) { #ifdef CONFIG_SMP if (is_halting(_current) && arch_is_in_isr()) { /* Another CPU (in an ISR) or thread is waiting for the * current thread to halt. Halt it now to help avoid a * potential deadlock. */ halt_thread(_current, is_aborting(_current) ? _THREAD_DEAD : _THREAD_SUSPENDED); } bool active = thread_active_elsewhere(thread); if (active) { /* It's running somewhere else, flag and poke */ thread->base.thread_state |= (terminate ? _THREAD_ABORTING : _THREAD_SUSPENDING); /* We might spin to wait, so a true synchronous IPI is needed * here, not deferred! */ #ifdef CONFIG_SCHED_IPI_SUPPORTED arch_sched_ipi(); #endif } if (is_halting(thread) && (thread != _current)) { if (arch_is_in_isr()) { /* ISRs can only spin waiting another CPU */ k_spin_unlock(&_sched_spinlock, key); while (is_halting(thread)) { } /* Now we know it's halting, but not necessarily * halted (suspended or aborted). Wait for the switch * to happen! */ key = k_spin_lock(&_sched_spinlock); z_sched_switch_spin(thread); k_spin_unlock(&_sched_spinlock, key); } else if (active) { /* Threads can wait on a queue */ add_to_waitq_locked(_current, terminate ? &thread->join_queue : &thread->halt_queue); z_swap(&_sched_spinlock, key); } return; /* lock has been released */ } #endif halt_thread(thread, terminate ? _THREAD_DEAD : _THREAD_SUSPENDED); if ((thread == _current) && !arch_is_in_isr()) { z_swap(&_sched_spinlock, key); __ASSERT(!terminate, "aborted _current back from dead"); } else { k_spin_unlock(&_sched_spinlock, key); } } void z_impl_k_thread_suspend(struct k_thread *thread) { SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, suspend, thread); (void)z_abort_thread_timeout(thread); k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); if ((thread->base.thread_state & _THREAD_SUSPENDED) != 0U) { /* The target thread is already suspended. Nothing to do. */ k_spin_unlock(&_sched_spinlock, key); return; } z_thread_halt(thread, key, false); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, suspend, thread); } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_thread_suspend(struct k_thread *thread) { K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); z_impl_k_thread_suspend(thread); } #include #endif void z_impl_k_thread_resume(struct k_thread *thread) { SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, resume, thread); k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); /* Do not try to resume a thread that was not suspended */ if (!z_is_thread_suspended(thread)) { k_spin_unlock(&_sched_spinlock, key); return; } z_mark_thread_as_not_suspended(thread); ready_thread(thread); z_reschedule(&_sched_spinlock, key); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, resume, thread); } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_thread_resume(struct k_thread *thread) { K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); z_impl_k_thread_resume(thread); } #include #endif static _wait_q_t *pended_on_thread(struct k_thread *thread) { __ASSERT_NO_MSG(thread->base.pended_on); return thread->base.pended_on; } static void unready_thread(struct k_thread *thread) { if (z_is_thread_queued(thread)) { dequeue_thread(thread); } update_cache(thread == _current); } /* _sched_spinlock must be held */ static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q) { unready_thread(thread); z_mark_thread_as_pending(thread); SYS_PORT_TRACING_FUNC(k_thread, sched_pend, thread); if (wait_q != NULL) { thread->base.pended_on = wait_q; z_priq_wait_add(&wait_q->waitq, thread); } } static void add_thread_timeout(struct k_thread *thread, k_timeout_t timeout) { if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) { z_add_thread_timeout(thread, timeout); } } static void pend_locked(struct k_thread *thread, _wait_q_t *wait_q, k_timeout_t timeout) { #ifdef CONFIG_KERNEL_COHERENCE __ASSERT_NO_MSG(wait_q == NULL || arch_mem_coherent(wait_q)); #endif add_to_waitq_locked(thread, wait_q); add_thread_timeout(thread, timeout); } void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, k_timeout_t timeout) { __ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread)); K_SPINLOCK(&_sched_spinlock) { pend_locked(thread, wait_q, timeout); } } static inline void unpend_thread_no_timeout(struct k_thread *thread) { _priq_wait_remove(&pended_on_thread(thread)->waitq, thread); z_mark_thread_as_not_pending(thread); thread->base.pended_on = NULL; } ALWAYS_INLINE void z_unpend_thread_no_timeout(struct k_thread *thread) { K_SPINLOCK(&_sched_spinlock) { if (thread->base.pended_on != NULL) { unpend_thread_no_timeout(thread); } } } void z_sched_wake_thread(struct k_thread *thread, bool is_timeout) { K_SPINLOCK(&_sched_spinlock) { bool killed = (thread->base.thread_state & (_THREAD_DEAD | _THREAD_ABORTING)); #ifdef CONFIG_EVENTS bool do_nothing = thread->no_wake_on_timeout && is_timeout; thread->no_wake_on_timeout = false; if (do_nothing) { continue; } #endif if (!killed) { /* The thread is not being killed */ if (thread->base.pended_on != NULL) { unpend_thread_no_timeout(thread); } z_mark_thread_as_started(thread); if (is_timeout) { z_mark_thread_as_not_suspended(thread); } ready_thread(thread); } } } #ifdef CONFIG_SYS_CLOCK_EXISTS /* Timeout handler for *_thread_timeout() APIs */ void z_thread_timeout(struct _timeout *timeout) { struct k_thread *thread = CONTAINER_OF(timeout, struct k_thread, base.timeout); z_sched_wake_thread(thread, true); } #endif int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, _wait_q_t *wait_q, k_timeout_t timeout) { #if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) pending_current = _current; #endif __ASSERT_NO_MSG(sizeof(_sched_spinlock) == 0 || lock != &_sched_spinlock); /* We do a "lock swap" prior to calling z_swap(), such that * the caller's lock gets released as desired. But we ensure * that we hold the scheduler lock and leave local interrupts * masked until we reach the context swich. z_swap() itself * has similar code; the duplication is because it's a legacy * API that doesn't expect to be called with scheduler lock * held. */ (void) k_spin_lock(&_sched_spinlock); pend_locked(_current, wait_q, timeout); k_spin_release(lock); return z_swap(&_sched_spinlock, key); } struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q) { struct k_thread *thread = NULL; K_SPINLOCK(&_sched_spinlock) { thread = _priq_wait_best(&wait_q->waitq); if (thread != NULL) { unpend_thread_no_timeout(thread); } } return thread; } struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q) { struct k_thread *thread = NULL; K_SPINLOCK(&_sched_spinlock) { thread = _priq_wait_best(&wait_q->waitq); if (thread != NULL) { unpend_thread_no_timeout(thread); (void)z_abort_thread_timeout(thread); } } return thread; } void z_unpend_thread(struct k_thread *thread) { z_unpend_thread_no_timeout(thread); (void)z_abort_thread_timeout(thread); } /* Priority set utility that does no rescheduling, it just changes the * run queue state, returning true if a reschedule is needed later. */ bool z_thread_prio_set(struct k_thread *thread, int prio) { bool need_sched = 0; K_SPINLOCK(&_sched_spinlock) { need_sched = z_is_thread_ready(thread); if (need_sched) { /* Don't requeue on SMP if it's the running thread */ if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(thread)) { dequeue_thread(thread); thread->base.prio = prio; queue_thread(thread); } else { thread->base.prio = prio; } update_cache(1); } else { thread->base.prio = prio; } } SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_priority_set, thread, prio); return need_sched; } static inline bool resched(uint32_t key) { #ifdef CONFIG_SMP _current_cpu->swap_ok = 0; #endif return arch_irq_unlocked(key) && !arch_is_in_isr(); } /* * Check if the next ready thread is the same as the current thread * and save the trip if true. */ static inline bool need_swap(void) { /* the SMP case will be handled in C based z_swap() */ #ifdef CONFIG_SMP return true; #else struct k_thread *new_thread; /* Check if the next ready thread is the same as the current thread */ new_thread = _kernel.ready_q.cache; return new_thread != _current; #endif } void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key) { if (resched(key.key) && need_swap()) { z_swap(lock, key); } else { k_spin_unlock(lock, key); signal_pending_ipi(); } } void z_reschedule_irqlock(uint32_t key) { if (resched(key) && need_swap()) { z_swap_irqlock(key); } else { irq_unlock(key); signal_pending_ipi(); } } void k_sched_lock(void) { K_SPINLOCK(&_sched_spinlock) { SYS_PORT_TRACING_FUNC(k_thread, sched_lock); z_sched_lock(); } } void k_sched_unlock(void) { K_SPINLOCK(&_sched_spinlock) { __ASSERT(_current->base.sched_locked != 0U, ""); __ASSERT(!arch_is_in_isr(), ""); ++_current->base.sched_locked; update_cache(0); } LOG_DBG("scheduler unlocked (%p:%d)", _current, _current->base.sched_locked); SYS_PORT_TRACING_FUNC(k_thread, sched_unlock); z_reschedule_unlocked(); } struct k_thread *z_swap_next_thread(void) { #ifdef CONFIG_SMP struct k_thread *ret = next_up(); if (ret == _current) { /* When not swapping, have to signal IPIs here. In * the context switch case it must happen later, after * _current gets requeued. */ signal_pending_ipi(); } return ret; #else return _kernel.ready_q.cache; #endif } #ifdef CONFIG_USE_SWITCH /* Just a wrapper around _current = xxx with tracing */ static inline void set_current(struct k_thread *new_thread) { z_thread_mark_switched_out(); _current_cpu->current = new_thread; } /** * @brief Determine next thread to execute upon completion of an interrupt * * Thread preemption is performed by context switching after the completion * of a non-recursed interrupt. This function determines which thread to * switch to if any. This function accepts as @p interrupted either: * * - The handle for the interrupted thread in which case the thread's context * must already be fully saved and ready to be picked up by a different CPU. * * - NULL if more work is required to fully save the thread's state after * it is known that a new thread is to be scheduled. It is up to the caller * to store the handle resulting from the thread that is being switched out * in that thread's "switch_handle" field after its * context has fully been saved, following the same requirements as with * the @ref arch_switch() function. * * If a new thread needs to be scheduled then its handle is returned. * Otherwise the same value provided as @p interrupted is returned back. * Those handles are the same opaque types used by the @ref arch_switch() * function. * * @warning * The @ref _current value may have changed after this call and not refer * to the interrupted thread anymore. It might be necessary to make a local * copy before calling this function. * * @param interrupted Handle for the thread that was interrupted or NULL. * @retval Handle for the next thread to execute, or @p interrupted when * no new thread is to be scheduled. */ void *z_get_next_switch_handle(void *interrupted) { z_check_stack_sentinel(); #ifdef CONFIG_SMP void *ret = NULL; K_SPINLOCK(&_sched_spinlock) { struct k_thread *old_thread = _current, *new_thread; if (IS_ENABLED(CONFIG_SMP)) { old_thread->switch_handle = NULL; } new_thread = next_up(); z_sched_usage_switch(new_thread); if (old_thread != new_thread) { update_metairq_preempt(new_thread); z_sched_switch_spin(new_thread); arch_cohere_stacks(old_thread, interrupted, new_thread); _current_cpu->swap_ok = 0; set_current(new_thread); #ifdef CONFIG_TIMESLICING z_reset_time_slice(new_thread); #endif #ifdef CONFIG_SPIN_VALIDATE /* Changed _current! Update the spinlock * bookkeeping so the validation doesn't get * confused when the "wrong" thread tries to * release the lock. */ z_spin_lock_set_owner(&_sched_spinlock); #endif /* A queued (runnable) old/current thread * needs to be added back to the run queue * here, and atomically with its switch handle * being set below. This is safe now, as we * will not return into it. */ if (z_is_thread_queued(old_thread)) { runq_add(old_thread); } } old_thread->switch_handle = interrupted; ret = new_thread->switch_handle; if (IS_ENABLED(CONFIG_SMP)) { /* Active threads MUST have a null here */ new_thread->switch_handle = NULL; } } signal_pending_ipi(); return ret; #else z_sched_usage_switch(_kernel.ready_q.cache); _current->switch_handle = interrupted; set_current(_kernel.ready_q.cache); return _current->switch_handle; #endif } #endif int z_unpend_all(_wait_q_t *wait_q) { int need_sched = 0; struct k_thread *thread; while ((thread = z_waitq_head(wait_q)) != NULL) { z_unpend_thread(thread); z_ready_thread(thread); need_sched = 1; } return need_sched; } void init_ready_q(struct _ready_q *ready_q) { #if defined(CONFIG_SCHED_SCALABLE) ready_q->runq = (struct _priq_rb) { .tree = { .lessthan_fn = z_priq_rb_lessthan, } }; #elif defined(CONFIG_SCHED_MULTIQ) for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) { sys_dlist_init(&ready_q->runq.queues[i]); } #else sys_dlist_init(&ready_q->runq); #endif } void z_sched_init(void) { #ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY for (int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) { init_ready_q(&_kernel.cpus[i].ready_q); } #else init_ready_q(&_kernel.ready_q); #endif } int z_impl_k_thread_priority_get(k_tid_t thread) { return thread->base.prio; } #ifdef CONFIG_USERSPACE static inline int z_vrfy_k_thread_priority_get(k_tid_t thread) { K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); return z_impl_k_thread_priority_get(thread); } #include #endif void z_impl_k_thread_priority_set(k_tid_t thread, int prio) { /* * Use NULL, since we cannot know what the entry point is (we do not * keep track of it) and idle cannot change its priority. */ Z_ASSERT_VALID_PRIO(prio, NULL); __ASSERT(!arch_is_in_isr(), ""); bool need_sched = z_thread_prio_set((struct k_thread *)thread, prio); flag_ipi(); if (need_sched && _current->base.sched_locked == 0U) { z_reschedule_unlocked(); } } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_thread_priority_set(k_tid_t thread, int prio) { K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); K_OOPS(K_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL), "invalid thread priority %d", prio)); #ifndef CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY K_OOPS(K_SYSCALL_VERIFY_MSG((int8_t)prio >= thread->base.prio, "thread priority may only be downgraded (%d < %d)", prio, thread->base.prio)); #endif z_impl_k_thread_priority_set(thread, prio); } #include #endif #ifdef CONFIG_SCHED_DEADLINE void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline) { struct k_thread *thread = tid; K_SPINLOCK(&_sched_spinlock) { thread->base.prio_deadline = k_cycle_get_32() + deadline; if (z_is_thread_queued(thread)) { dequeue_thread(thread); queue_thread(thread); } } } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_thread_deadline_set(k_tid_t tid, int deadline) { struct k_thread *thread = tid; K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); K_OOPS(K_SYSCALL_VERIFY_MSG(deadline > 0, "invalid thread deadline %d", (int)deadline)); z_impl_k_thread_deadline_set((k_tid_t)thread, deadline); } #include #endif #endif bool k_can_yield(void) { return !(k_is_pre_kernel() || k_is_in_isr() || z_is_idle_thread_object(_current)); } void z_impl_k_yield(void) { __ASSERT(!arch_is_in_isr(), ""); SYS_PORT_TRACING_FUNC(k_thread, yield); k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(_current)) { dequeue_thread(_current); } queue_thread(_current); update_cache(1); z_swap(&_sched_spinlock, key); } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_yield(void) { z_impl_k_yield(); } #include #endif static int32_t z_tick_sleep(k_ticks_t ticks) { uint32_t expected_wakeup_ticks; __ASSERT(!arch_is_in_isr(), ""); LOG_DBG("thread %p for %lu ticks", _current, (unsigned long)ticks); #ifdef CONFIG_MULTITHREADING /* wait of 0 ms is treated as a 'yield' */ if (ticks == 0) { k_yield(); return 0; } #endif if (Z_TICK_ABS(ticks) <= 0) { expected_wakeup_ticks = ticks + sys_clock_tick_get_32(); } else { expected_wakeup_ticks = Z_TICK_ABS(ticks); } #ifdef CONFIG_MULTITHREADING k_timeout_t timeout = Z_TIMEOUT_TICKS(ticks); k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); #if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) pending_current = _current; #endif unready_thread(_current); z_add_thread_timeout(_current, timeout); z_mark_thread_as_suspended(_current); (void)z_swap(&_sched_spinlock, key); __ASSERT(!z_is_thread_state_set(_current, _THREAD_SUSPENDED), ""); ticks = (k_ticks_t)expected_wakeup_ticks - sys_clock_tick_get_32(); if (ticks > 0) { return ticks; } #else /* busy wait to be time coherent since subsystems may depend on it */ z_impl_k_busy_wait(k_ticks_to_us_ceil32(expected_wakeup_ticks)); #endif return 0; } int32_t z_impl_k_sleep(k_timeout_t timeout) { k_ticks_t ticks; __ASSERT(!arch_is_in_isr(), ""); SYS_PORT_TRACING_FUNC_ENTER(k_thread, sleep, timeout); /* in case of K_FOREVER, we suspend */ if (K_TIMEOUT_EQ(timeout, K_FOREVER)) { #ifdef CONFIG_MULTITHREADING k_thread_suspend(_current); #else /* In Single Thread, just wait for an interrupt saving power */ k_cpu_idle(); #endif SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, (int32_t) K_TICKS_FOREVER); return (int32_t) K_TICKS_FOREVER; } ticks = timeout.ticks; ticks = z_tick_sleep(ticks); int32_t ret = k_ticks_to_ms_ceil64(ticks); SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, ret); return ret; } #ifdef CONFIG_USERSPACE static inline int32_t z_vrfy_k_sleep(k_timeout_t timeout) { return z_impl_k_sleep(timeout); } #include #endif int32_t z_impl_k_usleep(int us) { int32_t ticks; SYS_PORT_TRACING_FUNC_ENTER(k_thread, usleep, us); ticks = k_us_to_ticks_ceil64(us); ticks = z_tick_sleep(ticks); int32_t ret = k_ticks_to_us_ceil64(ticks); SYS_PORT_TRACING_FUNC_EXIT(k_thread, usleep, us, ret); return ret; } #ifdef CONFIG_USERSPACE static inline int32_t z_vrfy_k_usleep(int us) { return z_impl_k_usleep(us); } #include #endif void z_impl_k_wakeup(k_tid_t thread) { SYS_PORT_TRACING_OBJ_FUNC(k_thread, wakeup, thread); if (z_is_thread_pending(thread)) { return; } if (z_abort_thread_timeout(thread) < 0) { /* Might have just been sleeping forever */ if (thread->base.thread_state != _THREAD_SUSPENDED) { return; } } k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); z_mark_thread_as_not_suspended(thread); if (!thread_active_elsewhere(thread)) { ready_thread(thread); } if (arch_is_in_isr()) { k_spin_unlock(&_sched_spinlock, key); } else { z_reschedule(&_sched_spinlock, key); } } #ifdef CONFIG_TRACE_SCHED_IPI extern void z_trace_sched_ipi(void); #endif #ifdef CONFIG_SMP void z_sched_ipi(void) { /* NOTE: When adding code to this, make sure this is called * at appropriate location when !CONFIG_SCHED_IPI_SUPPORTED. */ #ifdef CONFIG_TRACE_SCHED_IPI z_trace_sched_ipi(); #endif #ifdef CONFIG_TIMESLICING if (sliceable(_current)) { z_time_slice(); } #endif } #endif #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_wakeup(k_tid_t thread) { K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); z_impl_k_wakeup(thread); } #include #endif k_tid_t z_impl_k_sched_current_thread_query(void) { #ifdef CONFIG_SMP /* In SMP, _current is a field read from _current_cpu, which * can race with preemption before it is read. We must lock * local interrupts when reading it. */ unsigned int k = arch_irq_lock(); #endif k_tid_t ret = _current_cpu->current; #ifdef CONFIG_SMP arch_irq_unlock(k); #endif return ret; } #ifdef CONFIG_USERSPACE static inline k_tid_t z_vrfy_k_sched_current_thread_query(void) { return z_impl_k_sched_current_thread_query(); } #include #endif int z_impl_k_is_preempt_thread(void) { return !arch_is_in_isr() && is_preempt(_current); } #ifdef CONFIG_USERSPACE static inline int z_vrfy_k_is_preempt_thread(void) { return z_impl_k_is_preempt_thread(); } #include #endif static inline void unpend_all(_wait_q_t *wait_q) { struct k_thread *thread; while ((thread = z_waitq_head(wait_q)) != NULL) { unpend_thread_no_timeout(thread); (void)z_abort_thread_timeout(thread); arch_thread_return_value_set(thread, 0); ready_thread(thread); } } #ifdef CONFIG_THREAD_ABORT_HOOK extern void thread_abort_hook(struct k_thread *thread); #endif /** * @brief Dequeues the specified thread * * Dequeues the specified thread and move it into the specified new state. * * @param thread Identify the thread to halt * @param new_state New thread state (_THREAD_DEAD or _THREAD_SUSPENDED) */ static void halt_thread(struct k_thread *thread, uint8_t new_state) { /* We hold the lock, and the thread is known not to be running * anywhere. */ if ((thread->base.thread_state & new_state) == 0U) { thread->base.thread_state |= new_state; clear_halting(thread); if (z_is_thread_queued(thread)) { dequeue_thread(thread); } if (new_state == _THREAD_DEAD) { if (thread->base.pended_on != NULL) { unpend_thread_no_timeout(thread); } (void)z_abort_thread_timeout(thread); unpend_all(&thread->join_queue); } #ifdef CONFIG_SMP unpend_all(&thread->halt_queue); #endif update_cache(1); if (new_state == _THREAD_SUSPENDED) { return; } #if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING) arch_float_disable(thread); #endif SYS_PORT_TRACING_FUNC(k_thread, sched_abort, thread); z_thread_monitor_exit(thread); #ifdef CONFIG_THREAD_ABORT_HOOK thread_abort_hook(thread); #endif #ifdef CONFIG_OBJ_CORE_THREAD #ifdef CONFIG_OBJ_CORE_STATS_THREAD k_obj_core_stats_deregister(K_OBJ_CORE(thread)); #endif k_obj_core_unlink(K_OBJ_CORE(thread)); #endif #ifdef CONFIG_USERSPACE z_mem_domain_exit_thread(thread); k_thread_perms_all_clear(thread); k_object_uninit(thread->stack_obj); k_object_uninit(thread); #endif } } void z_thread_abort(struct k_thread *thread) { k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); if (z_is_thread_essential(thread)) { k_spin_unlock(&_sched_spinlock, key); __ASSERT(false, "aborting essential thread %p", thread); k_panic(); return; } if ((thread->base.thread_state & _THREAD_DEAD) != 0U) { k_spin_unlock(&_sched_spinlock, key); return; } z_thread_halt(thread, key, true); } #if !defined(CONFIG_ARCH_HAS_THREAD_ABORT) void z_impl_k_thread_abort(struct k_thread *thread) { SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, abort, thread); z_thread_abort(thread); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, abort, thread); } #endif int z_impl_k_thread_join(struct k_thread *thread, k_timeout_t timeout) { k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); int ret = 0; SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, join, thread, timeout); if ((thread->base.thread_state & _THREAD_DEAD) != 0U) { z_sched_switch_spin(thread); ret = 0; } else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { ret = -EBUSY; } else if ((thread == _current) || (thread->base.pended_on == &_current->join_queue)) { ret = -EDEADLK; } else { __ASSERT(!arch_is_in_isr(), "cannot join in ISR"); add_to_waitq_locked(_current, &thread->join_queue); add_thread_timeout(_current, timeout); SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_thread, join, thread, timeout); ret = z_swap(&_sched_spinlock, key); SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret); return ret; } SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret); k_spin_unlock(&_sched_spinlock, key); return ret; } #ifdef CONFIG_USERSPACE /* Special case: don't oops if the thread is uninitialized. This is because * the initialization bit does double-duty for thread objects; if false, means * the thread object is truly uninitialized, or the thread ran and exited for * some reason. * * Return true in this case indicating we should just do nothing and return * success to the caller. */ static bool thread_obj_validate(struct k_thread *thread) { struct k_object *ko = k_object_find(thread); int ret = k_object_validate(ko, K_OBJ_THREAD, _OBJ_INIT_TRUE); switch (ret) { case 0: return false; case -EINVAL: return true; default: #ifdef CONFIG_LOG k_object_dump_error(ret, thread, ko, K_OBJ_THREAD); #endif K_OOPS(K_SYSCALL_VERIFY_MSG(ret, "access denied")); } CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ } static inline int z_vrfy_k_thread_join(struct k_thread *thread, k_timeout_t timeout) { if (thread_obj_validate(thread)) { return 0; } return z_impl_k_thread_join(thread, timeout); } #include static inline void z_vrfy_k_thread_abort(k_tid_t thread) { if (thread_obj_validate(thread)) { return; } K_OOPS(K_SYSCALL_VERIFY_MSG(!z_is_thread_essential(thread), "aborting essential thread %p", thread)); z_impl_k_thread_abort((struct k_thread *)thread); } #include #endif /* CONFIG_USERSPACE */ /* * future scheduler.h API implementations */ bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data) { struct k_thread *thread; bool ret = false; K_SPINLOCK(&_sched_spinlock) { thread = _priq_wait_best(&wait_q->waitq); if (thread != NULL) { z_thread_return_value_set_with_data(thread, swap_retval, swap_data); unpend_thread_no_timeout(thread); (void)z_abort_thread_timeout(thread); ready_thread(thread); ret = true; } } return ret; } int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key, _wait_q_t *wait_q, k_timeout_t timeout, void **data) { int ret = z_pend_curr(lock, key, wait_q, timeout); if (data != NULL) { *data = _current->base.swap_data; } return ret; } int z_sched_waitq_walk(_wait_q_t *wait_q, int (*func)(struct k_thread *, void *), void *data) { struct k_thread *thread; int status = 0; K_SPINLOCK(&_sched_spinlock) { _WAIT_Q_FOR_EACH(wait_q, thread) { /* * Invoke the callback function on each waiting thread * for as long as there are both waiting threads AND * it returns 0. */ status = func(thread, data); if (status != 0) { break; } } } return status; }