/* * Copyright (c) 2013-2015 Wind River Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2) Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3) Neither the name of Wind River Systems nor the names of its contributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* DESCRIPTION This is the UART driver for the Freescale K20 Family of microprocessors. USAGE An _K20_UART_t structure is used to describe the UART. The BSP's _InitHardware() routine initializes all the values in the uart_init_info structure before calling uart_init(). INCLUDE FILES: drivers/serial/k20_uart.h */ /* includes */ #include #include #include #include #include #include #include #include #include /* typedefs */ typedef struct { uint8_t *baseAddr; /* base address of registers */ uint8_t irq; /* interrupt request level */ uint8_t intPri; /* interrupt priority */ } _k20Uart_t; /* locals */ static _k20Uart_t __noinit uart[CONFIG_UART_NUM_SYSTEM_PORTS]; /******************************************************************************* * * uart_init - initialize UART channel * * This routine is called to reset the chip in a quiescent state. * It is assumed that this function is called only once per UART. * * RETURNS: N/A */ void uart_init(int which, /* UART channel to initialize */ const struct uart_init_info * const init_info ) { int oldLevel; /* old interrupt lock level */ K20_SIM_t *sim_p = (K20_SIM_t *)PERIPH_ADDR_BASE_SIM; /* sys integ. ctl */ C1_t c1; /* UART C1 register value */ C2_t c2; /* UART C2 register value */ uart[which].baseAddr = (uint8_t *)init_info->regs; uart[which].irq = init_info->irq; uart[which].intPri = init_info->int_pri; K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; /* disable interrupts */ oldLevel = irq_lock(); /* enable clock to Uart - must be done prior to device access */ _k20SimUartClkEnable(sim_p, which); _k20UartBaudRateSet(uart_p, init_info->sys_clk_freq, init_info->baud_rate); /* 1 start bit, 8 data bits, no parity, 1 stop bit */ c1.value = 0; uart_p->c1 = c1; /* enable Rx and Tx with interrupts disabled */ c2.value = 0; c2.field.rxEnable = 1; c2.field.txEnable = 1; uart_p->c2 = c2; /* restore interrupt state */ irq_unlock(oldLevel); } /******************************************************************************* * * uart_poll_in - poll the device for input. * * RETURNS: 0 if a character arrived, -1 if the input buffer if empty. */ int uart_poll_in(int which, /* UART channel to select for input */ unsigned char *pChar /* pointer to char */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; if (uart_p->s1.field.rxDataFull == 0) return (-1); /* got a character */ *pChar = uart_p->d; return 0; } /******************************************************************************* * * uart_poll_out - output a character in polled mode. * * Checks if the transmitter is empty. If empty, a character is written to * the data register. * * If the hardware flow control is enabled then the handshake signal CTS has to * be asserted in order to send a character. * * RETURNS: sent character */ unsigned char uart_poll_out( int which, /* UART channel to select for output */ unsigned char outChar /* char to send */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; /* wait for transmitter to ready to accept a character */ while (uart_p->s1.field.txDataEmpty == 0) ; uart_p->d = outChar; return outChar; } #if CONFIG_UART_INTERRUPT_DRIVEN /******************************************************************************* * * uart_fifo_fill - fill FIFO with data * RETURNS: number of bytes sent */ int uart_fifo_fill(int which, /* UART on which to send */ const uint8_t *txData, /* data to transmit */ int len /* number of bytes to send */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; uint8_t numTx = 0; while ((len - numTx > 0) && (uart_p->s1.field.txDataEmpty == 1)) { uart_p->d = txData[numTx++]; } return numTx; } /******************************************************************************* * * uart_fifo_read - read data from FIFO * * RETURNS: number of bytes read */ int uart_fifo_read(int which, /* UART to receive from */ uint8_t *rxData, /* data container */ const int size /* container size */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; uint8_t numRx = 0; while ((size - numRx > 0) && (uart_p->s1.field.rxDataFull == 0)) { rxData[numRx++] = uart_p->d; } return numRx; } /******************************************************************************* * * uart_irq_tx_enable - enable TX interrupt * * RETURNS: N/A */ void uart_irq_tx_enable(int which /* UART to enable Tx interrupt */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; uart_p->c2.field.txInt_DmaTx_en = 1; } /******************************************************************************* * * uart_irq_tx_disable - disable TX interrupt in IER * * RETURNS: N/A */ void uart_irq_tx_disable( int which /* UART to disable Tx interrupt */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; uart_p->c2.field.txInt_DmaTx_en = 0; } /******************************************************************************* * * uart_irq_tx_ready - check if Tx IRQ has been raised * * RETURNS: 1 if an IRQ is ready, 0 otherwise */ int uart_irq_tx_ready(int which /* UART to check */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; return uart_p->s1.field.txDataEmpty; } /******************************************************************************* * * uart_irq_rx_enable - enable RX interrupt in IER * * RETURNS: N/A */ void uart_irq_rx_enable(int which /* UART to enable Rx interrupt */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; uart_p->c2.field.rxFullInt_dmaTx_en = 1; } /******************************************************************************* * * uart_irq_rx_disable - disable RX interrupt in IER * * RETURNS: N/A */ void uart_irq_rx_disable( int which /* UART to disable Rx interrupt */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; uart_p->c2.field.rxFullInt_dmaTx_en = 0; } /******************************************************************************* * * uart_irq_rx_ready - check if Rx IRQ has been raised * * RETURNS: 1 if an IRQ is ready, 0 otherwise */ int uart_irq_rx_ready(int which /* UART to check */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; return uart_p->s1.field.rxDataFull; } /******************************************************************************* * * uart_irq_err_enable - enable error interrupt * * RETURNS: N/A */ void uart_irq_err_enable(int which) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; C3_t c3 = uart_p->c3; c3.field.parityErrIntEn = 1; c3.field.frameErrIntEn = 1; c3.field.noiseErrIntEn = 1; c3.field.overrunErrIntEn = 1; uart_p->c3 = c3; } /******************************************************************************* * * uart_irq_err_disable - disable error interrupt * * RETURNS: N/A */ void uart_irq_err_disable(int which /* UART to disable Rx interrupt */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; C3_t c3 = uart_p->c3; c3.field.parityErrIntEn = 0; c3.field.frameErrIntEn = 0; c3.field.noiseErrIntEn = 0; c3.field.overrunErrIntEn = 0; uart_p->c3 = c3; } /******************************************************************************* * * uart_irq_is_pending - check if Tx or Rx IRQ is pending * * RETURNS: 1 if a Tx or Rx IRQ is pending, 0 otherwise */ int uart_irq_is_pending(int which /* UART to check */ ) { K20_UART_t *uart_p = (K20_UART_t *)uart[which].baseAddr; /* Look only at Tx and Rx data interrupt flags */ return ((uart_p->s1.value & (TX_DATA_EMPTY_MASK | RX_DATA_FULL_MASK)) ? 1 : 0); } /******************************************************************************* * * uart_irq_update - update IRQ status * * RETURNS: always 1 */ int uart_irq_update(int which) { return 1; } /******************************************************************************* * * uart_int_connect - connect an ISR to an interrupt line * * The kernel configuration allows to setup an interrupt line for a particular * DUART. This routine installs the ISR of a UART user to the interrupt line * chosen for the hardware at configuration time. * * RETURNS: N/A */ void uart_int_connect(int which, /* UART to which to connect */ void (*isr)(void *), /* interrupt handler */ void *arg, /* argument to pass to handler */ void *stub /* ptr to interrupt stub code */ ) { #if !defined(CONFIG_SW_ISR_TABLE_DYNAMIC) ARG_UNUSED(isr); ARG_UNUSED(arg); ARG_UNUSED(stub); #else irq_connect((unsigned int)uart[which].irq, (unsigned int)uart[which].intPri, isr, arg); #endif irq_enable((unsigned int)uart[which].irq); } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */