/* * Copyright (c) 2017 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * 8) const char *otype_to_str(enum k_objects otype) { /* -fdata-sections doesn't work right except in very very recent * GCC and these literal strings would appear in the binary even if * otype_to_str was omitted by the linker */ #ifdef CONFIG_PRINTK switch (otype) { /* Core kernel objects */ case K_OBJ_ALERT: return "k_alert"; case K_OBJ_MSGQ: return "k_msgq"; case K_OBJ_MUTEX: return "k_mutex"; case K_OBJ_PIPE: return "k_pipe"; case K_OBJ_SEM: return "k_sem"; case K_OBJ_STACK: return "k_stack"; case K_OBJ_THREAD: return "k_thread"; case K_OBJ_TIMER: return "k_timer"; case K_OBJ__THREAD_STACK_ELEMENT: return "k_thread_stack_t"; /* Driver subsystems */ case K_OBJ_DRIVER_ADC: return "adc driver"; case K_OBJ_DRIVER_AIO_CMP: return "aio comparator driver"; case K_OBJ_DRIVER_COUNTER: return "counter driver"; case K_OBJ_DRIVER_CRYPTO: return "crypto driver"; case K_OBJ_DRIVER_DMA: return "dma driver"; case K_OBJ_DRIVER_FLASH: return "flash driver"; case K_OBJ_DRIVER_GPIO: return "gpio driver"; case K_OBJ_DRIVER_I2C: return "i2c driver"; case K_OBJ_DRIVER_I2S: return "i2s driver"; case K_OBJ_DRIVER_IPM: return "ipm driver"; case K_OBJ_DRIVER_PINMUX: return "pinmux driver"; case K_OBJ_DRIVER_PWM: return "pwm driver"; case K_OBJ_DRIVER_ENTROPY: return "entropy driver"; case K_OBJ_DRIVER_RTC: return "realtime clock driver"; case K_OBJ_DRIVER_SENSOR: return "sensor driver"; case K_OBJ_DRIVER_SPI: return "spi driver"; case K_OBJ_DRIVER_UART: return "uart driver"; default: return "?"; } #else ARG_UNUSED(otype); return NULL; #endif } struct perm_ctx { int parent_id; int child_id; struct k_thread *parent; }; #ifdef CONFIG_DYNAMIC_OBJECTS struct dyn_obj { struct _k_object kobj; struct rbnode node; /* must be immediately before data member */ u8_t data[]; /* The object itself */ }; struct visit_ctx { _wordlist_cb_func_t func; void *original_context; }; extern struct _k_object *_k_object_gperf_find(void *obj); extern void _k_object_gperf_wordlist_foreach(_wordlist_cb_func_t func, void *context); static int node_lessthan(struct rbnode *a, struct rbnode *b); static struct rbtree obj_rb_tree = { .lessthan_fn = node_lessthan }; /* TODO: incorporate auto-gen with Leandro's patch */ static size_t obj_size_get(enum k_objects otype) { switch (otype) { case K_OBJ_ALERT: return sizeof(struct k_alert); case K_OBJ_MSGQ: return sizeof(struct k_msgq); case K_OBJ_MUTEX: return sizeof(struct k_mutex); case K_OBJ_PIPE: return sizeof(struct k_pipe); case K_OBJ_SEM: return sizeof(struct k_sem); case K_OBJ_STACK: return sizeof(struct k_stack); case K_OBJ_THREAD: return sizeof(struct k_thread); case K_OBJ_TIMER: return sizeof(struct k_timer); default: return sizeof(struct device); } } static int node_lessthan(struct rbnode *a, struct rbnode *b) { return a < b; } static inline struct dyn_obj *node_to_dyn_obj(struct rbnode *node) { return CONTAINER_OF(node, struct dyn_obj, node); } static struct dyn_obj *dyn_object_find(void *obj) { struct rbnode *node; struct dyn_obj *ret; int key; /* For any dynamically allocated kernel object, the object * pointer is just a member of the conatining struct dyn_obj, * so just a little arithmetic is necessary to locate the * corresponding struct rbnode */ node = (struct rbnode *)((char *)obj - sizeof(struct rbnode)); key = irq_lock(); if (rb_contains(&obj_rb_tree, node)) { ret = node_to_dyn_obj(node); } else { ret = NULL; } irq_unlock(key); return ret; } void *k_object_alloc(enum k_objects otype) { struct dyn_obj *dyn_obj; int key; /* Stacks are not supported, we don't yet have mem pool APIs * to request memory that is aligned */ __ASSERT(otype > K_OBJ_ANY && otype < K_OBJ_LAST && otype != K_OBJ__THREAD_STACK_ELEMENT, "bad object type requested"); dyn_obj = k_malloc(sizeof(*dyn_obj) + obj_size_get(otype)); if (!dyn_obj) { SYS_LOG_WRN("could not allocate kernel object"); return NULL; } dyn_obj->kobj.name = (char *)&dyn_obj->data; dyn_obj->kobj.type = otype; dyn_obj->kobj.flags = 0; memset(dyn_obj->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES); /* The allocating thread implicitly gets permission on kernel objects * that it allocates */ _thread_perms_set(&dyn_obj->kobj, _current); key = irq_lock(); rb_insert(&obj_rb_tree, &dyn_obj->node); irq_unlock(key); return dyn_obj->kobj.name; } void k_object_free(void *obj) { struct dyn_obj *dyn_obj; int key; /* This function is intentionally not exposed to user mode. * There's currently no robust way to track that an object isn't * being used by some other thread */ key = irq_lock(); dyn_obj = dyn_object_find(obj); if (dyn_obj) { rb_remove(&obj_rb_tree, &dyn_obj->node); } irq_unlock(key); if (dyn_obj) { k_free(dyn_obj); } } struct _k_object *_k_object_find(void *obj) { struct _k_object *ret; ret = _k_object_gperf_find(obj); if (!ret) { struct dyn_obj *dyn_obj; dyn_obj = dyn_object_find(obj); if (dyn_obj) { ret = &dyn_obj->kobj; } } return ret; } static void visit_fn(struct rbnode *node, void *context) { struct visit_ctx *vctx = context; vctx->func(&node_to_dyn_obj(node)->kobj, vctx->original_context); } void _k_object_wordlist_foreach(_wordlist_cb_func_t func, void *context) { struct visit_ctx vctx; int key; _k_object_gperf_wordlist_foreach(func, context); vctx.func = func; vctx.original_context = context; key = irq_lock(); rb_walk(&obj_rb_tree, visit_fn, &vctx); irq_unlock(key); } #endif /* CONFIG_DYNAMIC_OBJECTS */ static int thread_index_get(struct k_thread *t) { struct _k_object *ko; ko = _k_object_find(t); if (!ko) { return -1; } return ko->data; } static void wordlist_cb(struct _k_object *ko, void *ctx_ptr) { struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr; if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) && (struct k_thread *)ko->name != ctx->parent) { sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id); } } void _thread_perms_inherit(struct k_thread *parent, struct k_thread *child) { struct perm_ctx ctx = { thread_index_get(parent), thread_index_get(child), parent }; if ((ctx.parent_id != -1) && (ctx.child_id != -1)) { _k_object_wordlist_foreach(wordlist_cb, &ctx); } } void _thread_perms_set(struct _k_object *ko, struct k_thread *thread) { int index = thread_index_get(thread); if (index != -1) { sys_bitfield_set_bit((mem_addr_t)&ko->perms, index); } } void _thread_perms_clear(struct _k_object *ko, struct k_thread *thread) { int index = thread_index_get(thread); if (index != -1) { sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index); } } static void clear_perms_cb(struct _k_object *ko, void *ctx_ptr) { int id = (int)ctx_ptr; sys_bitfield_clear_bit((mem_addr_t)&ko->perms, id); } void _thread_perms_all_clear(struct k_thread *thread) { int index = thread_index_get(thread); if (index != -1) { _k_object_wordlist_foreach(clear_perms_cb, (void *)index); } } static int thread_perms_test(struct _k_object *ko) { int index; if (ko->flags & K_OBJ_FLAG_PUBLIC) { return 1; } index = thread_index_get(_current); if (index != -1) { return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index); } return 0; } static void dump_permission_error(struct _k_object *ko) { int index = thread_index_get(_current); printk("thread %p (%d) does not have permission on %s %p [", _current, index, otype_to_str(ko->type), ko->name); for (int i = CONFIG_MAX_THREAD_BYTES - 1; i >= 0; i--) { printk("%02x", ko->perms[i]); } printk("]\n"); } void _dump_object_error(int retval, void *obj, struct _k_object *ko, enum k_objects otype) { switch (retval) { case -EBADF: printk("%p is not a valid %s\n", obj, otype_to_str(otype)); break; case -EPERM: dump_permission_error(ko); break; case -EINVAL: printk("%p used before initialization\n", obj); break; case -EADDRINUSE: printk("%p %s in use\n", obj, otype_to_str(otype)); } } void _impl_k_object_access_grant(void *object, struct k_thread *thread) { struct _k_object *ko = _k_object_find(object); if (ko) { _thread_perms_set(ko, thread); } } void _impl_k_object_access_revoke(void *object, struct k_thread *thread) { struct _k_object *ko = _k_object_find(object); if (ko) { _thread_perms_clear(ko, thread); } } void k_object_access_all_grant(void *object) { struct _k_object *ko = _k_object_find(object); if (ko) { ko->flags |= K_OBJ_FLAG_PUBLIC; } } int _k_object_validate(struct _k_object *ko, enum k_objects otype, enum _obj_init_check init) { if (unlikely(!ko || (otype != K_OBJ_ANY && ko->type != otype))) { return -EBADF; } /* Manipulation of any kernel objects by a user thread requires that * thread be granted access first, even for uninitialized objects */ if (unlikely(!thread_perms_test(ko))) { return -EPERM; } /* Initialization state checks. _OBJ_INIT_ANY, we don't care */ if (likely(init == _OBJ_INIT_TRUE)) { /* Object MUST be intialized */ if (unlikely(!(ko->flags & K_OBJ_FLAG_INITIALIZED))) { return -EINVAL; } } else if (init < _OBJ_INIT_TRUE) { /* _OBJ_INIT_FALSE case */ /* Object MUST NOT be initialized */ if (unlikely(ko->flags & K_OBJ_FLAG_INITIALIZED)) { return -EADDRINUSE; } } return 0; } void _k_object_init(void *object) { struct _k_object *ko; /* By the time we get here, if the caller was from userspace, all the * necessary checks have been done in _k_object_validate(), which takes * place before the object is initialized. * * This function runs after the object has been initialized and * finalizes it */ ko = _k_object_find(object); if (!ko) { /* Supervisor threads can ignore rules about kernel objects * and may declare them on stacks, etc. Such objects will never * be usable from userspace, but we shouldn't explode. */ return; } /* Allows non-initialization system calls to be made on this object */ ko->flags |= K_OBJ_FLAG_INITIALIZED; } void _k_object_uninit(void *object) { struct _k_object *ko; /* See comments in _k_object_init() */ ko = _k_object_find(object); if (!ko) { return; } ko->flags &= ~K_OBJ_FLAG_INITIALIZED; } static u32_t handler_bad_syscall(u32_t bad_id, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t arg6, void *ssf) { printk("Bad system call id %u invoked\n", bad_id); _arch_syscall_oops(ssf); CODE_UNREACHABLE; } static u32_t handler_no_syscall(u32_t arg1, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t arg6, void *ssf) { printk("Unimplemented system call\n"); _arch_syscall_oops(ssf); CODE_UNREACHABLE; } #include